Suppr超能文献

Metal ion effects on target sites of modification in metallocarboxypeptidase B.

作者信息

Zisapel N, Blank T, Sokolovsky M

出版信息

J Inorg Biochem. 1983 Jun;18(3):253-62. doi: 10.1016/0162-0134(83)85007-7.

Abstract

Native carboxypeptidase B and its Co2+-substituted derivative were oxidized by the active-site-directed agent m-chloroperbenzoic acid. The following results were obtained a) In the cobalt enzyme there was a decrease in both the peptidase and the esterase activities, whereas in the zinc enzyme only the peptidase activity decreased. Peptide or ester pseudo-substrates protected the cobalt enzyme but not the zinc enzyme against inactivation. b) Upon oxidation and formation of Co3+, cleavage of peptide bonds occurred in the cobalt enzyme but not in the zinc enzyme. Both enzymes retained their original metal content. c) Following oxidation of the enzymes, amino acid analysis revealed a modification of a methionyl residue in the zinc enzyme only; the cobalt enzyme, on the other hand, showed a modification of a histidyl residue. d) Peptide mapping of the enzymes after cleavage by cyanogen bromide indicated that two methionyl peptides were missing in the oxidized zinc enzyme. These peptides point to Met-64 as the site of modification. The peptide map of the oxidized cobalt enzyme was similar to that of the unmodified native (i.e., zinc) enzyme. These studies indicate that the specific metal ion present in the enzyme imposes certain structural and functional differences on the active site, leading to differing reactivities of specific amino acid residues and to a different alignment of the active-site-directed reagent in the two enzymes.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验