Rizza R A, Mandarino L J, Gerich J E
J Clin Endocrinol Metab. 1982 Jan;54(1):131-8. doi: 10.1210/jcem-54-1-131.
The present studies were undertaken to assess the mechanisms responsible for cortisol-induced insulin resistance in man. The insulin dose-response characteristics for suppression of glucose production and stimulation of glucose utilization and their relationship to monocyte and erythrocyte insulin receptor binding were determined in six normal volunteers after 24-h infusion of cortisol and 24-h infusion of saline. The infusion of cortisol (2 microgram kg-1 min-1) increased the plasma cortisol concentration approximately 4-fold (37 +/- 3 vs. 14 +/- 1 microgram/dl; P less than 0.01) to values observed during moderately severe stress in man. This hypercortisolemia increased postabsorptive plasma glucose (126 +/- 2 vs. 97 +/- 2 mg/dl; P less than 0.01) and plasma insulin (16 +/- 2 vs. 10 +/- 2 microU/ml; P less than 0.01) concentrations and rates of glucose production (2.4 +/- 0.1 vs. 2.1 +/- -0.1 mg kg-1 min-1; P less than 0.01) and utilization (2.5 +/- 0.1 vs. 2.1 +/- 0.1 mg kg-1 min -1; P less than 0.01). Insulin dose-response curves for both suppression of glucose production (half-maximal response at 81 +/- 19 vs. 31 +/ 5 microU/ml; P less than 0.05) and stimulation of glucose utilization (half-maximal response at 104 +/- 9 vs. 64 +/- 7 microU/ml; P less than 0.01) were shifted to the right, with preservation of normal maximal responses to insulin. Neither monocyte nor erythrocyte insulin binding was decreased. However, except at near-maximal insulin receptor occupancy, the action of insulin on glucose production and utilization per number of monocyte and erythrocyte insulin receptors occupied was decreased. These results indicate that the cortisol-induced insulin resistance in man is due to the decrease in both hepatic and extrahepatic sensitivity to insulin. Assuming that insulin binding to monocytes and erythrocytes reflects insulin binding in insulin-sensitive tissues, this decrease in insulin action can be explained on the basis of a postreceptor defect.
本研究旨在评估人类中皮质醇诱导胰岛素抵抗的机制。在6名正常志愿者中,分别进行24小时皮质醇输注和24小时生理盐水输注后,测定抑制葡萄糖生成、刺激葡萄糖利用的胰岛素剂量反应特性,以及它们与单核细胞和红细胞胰岛素受体结合的关系。皮质醇输注(2微克/千克·分钟)使血浆皮质醇浓度增加约4倍(37±3对14±1微克/分升;P<0.01),达到人类中度严重应激时观察到的值。这种高皮质醇血症增加了空腹后血浆葡萄糖(126±2对97±2毫克/分升;P<0.01)、血浆胰岛素(16±2对10±2微单位/毫升;P<0.01)浓度,以及葡萄糖生成率(2.4±0.1对2.1±0.1毫克/千克·分钟;P<0.01)和利用率(2.5±0.1对2.1±0.1毫克/千克·分钟;P<0.01)。抑制葡萄糖生成(半数最大反应在81±19对31±5微单位/毫升;P<0.05)和刺激葡萄糖利用(半数最大反应在104±9对64±7微单位/毫升;P<0.01)的胰岛素剂量反应曲线均右移,同时保留了对胰岛素的正常最大反应。单核细胞和红细胞胰岛素结合均未降低。然而,除了在接近最大胰岛素受体占有率时,胰岛素对每个被占据的单核细胞和红细胞胰岛素受体的葡萄糖生成和利用作用降低。这些结果表明,人类中皮质醇诱导的胰岛素抵抗是由于肝脏和肝外对胰岛素的敏感性降低。假设胰岛素与单核细胞和红细胞的结合反映了胰岛素在胰岛素敏感组织中的结合,那么这种胰岛素作用的降低可以基于受体后缺陷来解释。