Suppr超能文献

猫有髓外周神经纤维的超微结构尺寸及其与传导速度的关系。

Ultrastructural dimensions of myelinated peripheral nerve fibres in the cat and their relation to conduction velocity.

作者信息

Arbuthnott E R, Boyd I A, Kalu K U

出版信息

J Physiol. 1980 Nov;308:125-57. doi: 10.1113/jphysiol.1980.sp013465.

Abstract
  1. The ultrastructure of all the afferent fibres, or all the efferent fibres, was studied in selected nerves from chronically de-afferentated or de-efferentated cat hind limbs perfusion-fixed with glutaraldehyde.2. The following parameters were measured: number of lamellae in the myelin sheath (n), axon perimeter (s), external fibre perimeter (S), axon cross-sectional area (A). Fibres were allocated to afferent groups I, II, III or efferent groups alpha and gamma according to the number of lamellae in the myelin sheath.3. The thickness of the myelin sheath (m) was linearly related to axon perimeter within the range s = 4 mum to s = 20 mum (groups II, III and gamma). The relation m = 0.103 s - 0.26 provided a good fit for all afferent and efferent axons in this range in several different anatomical muscle nerves in three cats. The myelin sheaths were thinner in a fourth, presumably younger, cat.4. The myelin sheaths were relatively thinner for large fibres in groups I and alpha (s = 20-50 mum). The results are interpreted in one of three ways. Either m tends to a limit of about 2.2 mum, or m is linearly related to s such that for large fibres m = 0.032 s + 1.11.5. Alternatively, m may be considered to be proportional to log(10)s for all sizes of axon so that m = 2.58 log(10) S - 1.73. The interpretation that there are two separate linear relations for large and small fibres is favoured.6. The ratio of axon to external fibre perimeter (g) falls from about 0.70 for group III and small gamma fibres in the cat to about 0.62 for group II and large gamma fibres and then rises again to 0.70, or even 0.75 for group I and alpha axons.7. The above relations between m and s are combined with the observations of Boyd & Kalu (1979) that Theta = 5.7 D for groups I and alpha and Theta = 4.6 D for groups II, III and gamma. It is shown that Theta = 2.5 s approximately for all sizes of axon (s from material fixed for electron microscopy) in rat, cat and man. The accuracy of this equation may be improved by deducting 3 m/sec in the case of small fibres. This conclusion is compatible with experimental observations of the relation between l and D (Hursh, 1939; Lubinska, 1960; Coppin, 1973) and between l and Theta (Coppin & Jack, 1972).8. From the theoretical analyses of Rushton (1951) and others Theta should be proportional to the external dimensions of the fibre rather than to axon size. It is shown that the thinning of the myelin sheath ought to affect Theta substantially. Thus some other factors must compensate for the thinning of the sheath.9. Small fibres are significantly more non-circular than large fibres. From the quantitative data of Arbuthnott et al. (1980) it is concluded that non-circularity may contribute to the fact that Theta proportional, variant s rather than Theta proportional, variant S, but cannot wholly account for it. Other possibilities considered are that axoplasmic resistivity or specific nodal conductance may differ for large and small fibres.10. It is suggested that myelinated peripheral nerve fibres may fall into two distinct classes with different properties, one comprising groups I and alpha and the other groups II, III and gamma. The conclusion predicted from theory may apply to each of these classes separately so that Theta = 2.0 S for the large-fibre class and Theta = 1.6 S for the small-fibre class.
摘要
  1. 用戊二醛灌注固定慢性去传入或去传出猫后肢的选定神经,研究所有传入纤维或所有传出纤维的超微结构。

  2. 测量以下参数:髓鞘板层数(n)、轴突周长(s)、纤维外周周长(S)、轴突横截面积(A)。根据髓鞘板层数将纤维分为传入I、II、III组或传出α和γ组。

  3. 髓鞘厚度(m)在轴突周长s = 4μm至s = 20μm范围内与轴突周长呈线性关系(II、III和γ组)。关系式m = 0.103s - 0.26对三只猫的几种不同解剖学肌肉神经中该范围内的所有传入和传出轴突拟合良好。在第四只可能较年轻的猫中,髓鞘较薄。

  4. I组和α组中的大纤维(s = 20 - 50μm)的髓鞘相对较薄。结果有三种解释方式。要么m趋于约2.2μm的极限,要么m与s呈线性关系,使得对于大纤维m = 0.032s + 1.11。

  5. 或者,对于所有大小的轴突,m可被认为与log(10)s成比例,使得m = 2.58 log(10)S - 1.73。倾向于认为大纤维和小纤维存在两种不同的线性关系的解释。

  6. 轴突与纤维外周周长之比(g)从猫的III组和小γ纤维的约0.70降至II组和大γ纤维的约0.62,然后再次升至0.70,对于I组和α轴突甚至升至0.75。

  7. 上述m与s之间的关系与博伊德和卡卢(1979年)的观察结果相结合,即I组和α组的θ = 5.7D,II、III和γ组的θ = 4.6D。结果表明,对于大鼠、猫和人的所有大小的轴突(来自用于电子显微镜检查的固定材料的s),θ约等于2.5s。对于小纤维,从该方程中减去3m/sec可提高其准确性。该结论与l和D之间(赫什,1939年;卢宾斯卡,1960年;科平,1973年)以及l和θ之间(科平与杰克,1972年)的实验观察结果相符。

  8. 根据拉什顿(1951年)等人的理论分析,θ应与纤维的外部尺寸成比例,而不是与轴突大小成比例。结果表明,髓鞘变薄应会显著影响θ。因此,一定有其他因素补偿了髓鞘的变薄。

  9. 小纤维比大纤维明显更不呈圆形。根据阿巴思诺特等人(1980年)的定量数据得出结论,非圆形性可能导致θ与s成比例变化而不是与S成比例变化,但不能完全解释这一现象。考虑的其他可能性是,大纤维和小纤维的轴浆电阻率或特定节点电导率可能不同。

  10. 有人提出,有髓外周神经纤维可能分为具有不同特性的两个不同类别,一类包括I组和α组,另一类包括II、III和γ组。理论预测的结论可能分别适用于这两个类别,使得大纤维类别的θ = 2.0S,小纤维类别的θ = 1.6S。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2835/1274542/636236b23773/jphysiol00712-0165-a.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验