Lee L, Sykes B D
Biophys J. 1980 Oct;32(1):193-210. doi: 10.1016/S0006-3495(80)84933-2.
The homologous sequences observed for many calcium binding proteins such as parvalbumin, troponin C, the myosin light chains, and calmodulin has lead to the hypothesis that these proteins have homologous structures at the level of their calcium binding sites. This paper discusses the development of a nuclear magnetic resonance (NMR) technique which will enable us to test this structural hypothesis in solution. The technique involves the substitution of a paramagnetic lanthanide ion for the calcium ion which results in lanthanide induced shifts and broadening in the 1H NMR spectrum of the protein. These shifts are sensitive monitors of the precise geometrical orientation of each proton nucleus relative to the metal. The values of several parameters in the equation relating the NMR shifts to the structure are however known as priori. We have attempted to determine these parameters, the orientation and principal elements of the magnetic susceptibility tensor of the protein bound metal, by studying the lanthanide induced shifts for the protein parvalbumin whose structure has been determined by x-ray crystallographic techniques. The interaction of the lanthanide ytterbium with parvalbumin results in high resolution NMR spectra exhibiting a series of resonances with shifts spread over the range 32 to -19 ppm. The orientation and principal elements of the ytterbium magnetic susceptibility tensor have been determined using three assigned NMR resonances, the His-26 C2 and C4 protons and the amino terminal acetyl protons, and seven methyl groups; all with known geometry relative to the EF calcium binding site. The elucidation of these parameters has allowed us to compare the observed spectrum of the nuclei surrounding the EF calcium binding site of parvalbumin with that calculated from the x-ray structure. A significant number of the calculated shifts are larger than any of the observed shifts. We feel that a refinement of the x-ray based proton coordinates will be possible utilizing the geometric information contained in the lanthanide shifted NMR spectrum.
在许多钙结合蛋白(如小白蛋白、肌钙蛋白C、肌球蛋白轻链和钙调蛋白)中观察到的同源序列,引发了这样一种假说:这些蛋白质在其钙结合位点水平上具有同源结构。本文讨论了一种核磁共振(NMR)技术的发展,该技术将使我们能够在溶液中检验这一结构假说。该技术涉及用顺磁性镧系离子取代钙离子,这会导致蛋白质的1H NMR谱中出现镧系元素诱导的位移和谱线展宽。这些位移是每个质子核相对于金属的精确几何取向的灵敏监测器。然而,将NMR位移与结构相关联的方程中的几个参数值是先验已知的。我们试图通过研究镧系元素诱导的小白蛋白位移来确定这些参数,即蛋白质结合金属的磁化率张量的取向和主元素,其结构已通过X射线晶体学技术确定。镱与小白蛋白的相互作用产生了高分辨率NMR谱,显示出一系列位移范围在32至 -19 ppm之间的共振。已使用三个指定的NMR共振(His-26 C2和C4质子以及氨基末端乙酰质子)和七个甲基确定了镱磁化率张量的取向和主元素;所有这些相对于EF钙结合位点都具有已知的几何结构。这些参数的阐明使我们能够将观察到的小白蛋白EF钙结合位点周围核的光谱与根据X射线结构计算出的光谱进行比较。大量计算出的位移大于任何观察到的位移。我们认为,利用镧系元素位移NMR谱中包含的几何信息,有可能对基于X射线的质子坐标进行优化。