Suppr超能文献

牛胰蛋白酶抑制剂中单个质子的氢同位素交换动力学

Hydrogen isotope exchange kinetics of single protons in bovine pancreatic trypsin inhibitor.

作者信息

Woodward C K, Hilton B D

出版信息

Biophys J. 1980 Oct;32(1):561-75. doi: 10.1016/S0006-3495(80)84990-3.

Abstract

The exchange kinetics of the slowest exchanging BPTI beta-sheet protons are complex compared to model peptides; the activation energy, E alpha, and the pH dependence are temperature dependent. We have measured the exchange kinetics in the range pH 1--11, 33--71 degrees C, particularly the temperature dependence. The data are fit to a model in which exchange of each proton is determined by two discrete dynamical processes, one with E alpha approximately 65 kcal/mol and less than first order dependence on catalyst ion, and one with E alpha 20--30 kcal/mol and approaching first order in catalyst ion. The low activation energy process is the mechanism of interest in the native conformation of globular proteins and involves low energy, small amplitude fluctuations; the high activation energy process involves major unfolding. The model is simple, has a precedent in the hydrogen exchange literature, and explains quantitatively the complex feature of the exchange kinetics of single protons in BPTI, including the following. For the slowest exchanging protons, in the range 36 degrees--68 degrees C, E alpha is approximately 65 kcal/mol at pH approximately 4, 20--30 kcal/mol at pH greater than 10, and rises to approximately 65 kcal/mol with increasing temperature at pH 6--10; the Arrhenius plots converge around 70 degrees C; the pH of minimum rate, pHmin, is greater than 1 pH unit higher at 68 degrees C than for model compounds; and at high pH, the pH-rate profiles shift to steeper slope; the exchange rates around pHmin are correlated to the thermal unfolding temperature in BPTI derivatives (Wagner and Wüthrich, 1979, J. Mol. Biol. 130:31). For the more rapidly exchanging protons in BPTI the model accounts for the observation of normal pHmin and E alpha of 20--30 kcal/mol at all pH's. The important results of our analysis are (a) rates for exchange from the folded state of proteins are not correlated to thermal lability, as proposed by Wuthrich et al. (1979, J. Mol. Biol. 134:75); (b) the unfolding rate for the BPTI cooperative thermal transition is equal to the observed exchange rates of the slowest exchanging protons between pH 8.4--9.6, 51 degrees C; (c) the rates for exchange of single protons from folded BPTI are consistent with our previous hydrogen-tritium exchange results and with a penetration model of the dynamic processes limiting hydrogen exchange.

摘要

与模型肽相比,交换最慢的BPTIβ-折叠质子的交换动力学较为复杂;活化能Eα和pH依赖性都与温度有关。我们测量了pH值在1-11、温度在33-71℃范围内的交换动力学,特别是温度依赖性。数据符合一个模型,其中每个质子的交换由两个离散的动力学过程决定,一个过程的Eα约为65千卡/摩尔,对催化离子的依赖性小于一级,另一个过程的Eα为20-30千卡/摩尔,对催化离子接近一级依赖性。低活化能过程是球状蛋白质天然构象中感兴趣的机制,涉及低能量、小幅度波动;高活化能过程涉及主要的去折叠。该模型简单,在氢交换文献中有先例,并且定量解释了BPTI中单个质子交换动力学的复杂特征,包括以下内容。对于交换最慢的质子,在36℃-68℃范围内,pH约为4时Eα约为65千卡/摩尔,pH大于10时为20-30千卡/摩尔,在pH 6-10时随着温度升高升至约65千卡/摩尔;阿累尼乌斯图在70℃左右收敛;最低速率的pH值(pHmin)在68℃时比模型化合物高1个pH单位以上;在高pH时,pH-速率曲线斜率变陡;pHmin附近的交换速率与BPTI衍生物的热去折叠温度相关(Wagner和Wüthrich,1979,《分子生物学杂志》130:31)。对于BPTI中交换较快的质子,该模型解释了在所有pH值下观察到的正常pHmin和20-30千卡/摩尔的Eα。我们分析的重要结果是:(a)蛋白质折叠态的交换速率与热不稳定性无关,这与Wuthrich等人(1979,《分子生物学杂志》134:75)提出的观点不同;(b)BPTI协同热转变的去折叠速率等于在pH 8.4-9.6、51℃下观察到的交换最慢的质子的交换速率;(c)从折叠的BPTI中单个质子的交换速率与我们之前的氢-氚交换结果以及限制氢交换的动态过程的渗透模型一致。

相似文献

1
Hydrogen isotope exchange kinetics of single protons in bovine pancreatic trypsin inhibitor.
Biophys J. 1980 Oct;32(1):561-75. doi: 10.1016/S0006-3495(80)84990-3.
7
On the pH dependence of amide proton exchange rates in proteins.
Biophys J. 1995 Aug;69(2):329-39. doi: 10.1016/S0006-3495(95)79905-2.
9
Water catalysis of peptide hydrogen isotope exchange.
Biochemistry. 1983 Feb 15;22(4):910-7. doi: 10.1021/bi00273a031.
10
Microsecond protein folding kinetics from native-state hydrogen exchange.
Biochemistry. 1997 Jul 22;36(29):8686-91. doi: 10.1021/bi970872m.

引用本文的文献

1
Hybrid Mass Spectrometry Applied across the Production of Antibody Biotherapeutics.
J Am Soc Mass Spectrom. 2025 Jan 1;36(1):44-57. doi: 10.1021/jasms.4c00253. Epub 2024 Nov 21.
2
Investigation of the Amide Proton Solvent Exchange Properties of Glycosaminoglycan Oligosaccharides.
J Phys Chem B. 2019 Jun 6;123(22):4653-4662. doi: 10.1021/acs.jpcb.9b01794. Epub 2019 May 22.
4
6
Cutting off functional loops from homodimeric enzyme superoxide dismutase 1 (SOD1) leaves monomeric β-barrels.
J Biol Chem. 2011 Sep 23;286(38):33070-83. doi: 10.1074/jbc.M111.251223. Epub 2011 Jun 23.
8
Residue-level interrogation of macromolecular crowding effects on protein stability.
J Am Chem Soc. 2008 May 28;130(21):6826-30. doi: 10.1021/ja8005995. Epub 2008 May 7.
10
A model for the coupling of alpha-helix and tertiary contact formation.
Protein Sci. 2006 Sep;15(9):2051-61. doi: 10.1110/ps.062292106. Epub 2006 Aug 1.

本文引用的文献

1
Exchange of hydrogen atoms in insulin with deuterium atoms in aqueous solutions.
Biochim Biophys Acta. 1954 Aug;14(4):574-5. doi: 10.1016/0006-3002(54)90241-3.
2
On the kinetics of structural transition I of some pancreatic proteins.
FEBS Lett. 1969 Apr;3(1):60-64. doi: 10.1016/0014-5793(69)80097-9.
3
The conformational properties of the basic pancreatic trypsin-inhibitor.
Eur J Biochem. 1971 Dec 10;23(3):401-11. doi: 10.1111/j.1432-1033.1971.tb01634.x.
4
Primary structure effects on peptide group hydrogen exchange.
Biochemistry. 1972 Jan 18;11(2):150-8. doi: 10.1021/bi00752a003.
5
A hydrogen-exchange study of lysozyme conformation changes induced by inhibitor binding.
Biochemistry. 1974 Jul 30;13(16):3273-7. doi: 10.1021/bi00713a015.
6
Fluctuation of the lysozyme structure. II. Effects of temperature and binding of inhibitors.
J Mol Biol. 1973 Apr 25;75(4):673-82. doi: 10.1016/0022-2836(73)90300-8.
7
Pancreatic trypsin inhibitor (Kunitz). I. Structure and function.
Cold Spring Harb Symp Quant Biol. 1972;36:141-8. doi: 10.1101/sqb.1972.036.01.019.
8
Measurement of structural and free energy changes in hemoglobin by hydrogen exchange methods.
Ann N Y Acad Sci. 1975 Apr 15;244:10-27. doi: 10.1111/j.1749-6632.1975.tb41518.x.
9
Hydrogen--tritium exchange.
Methods Enzymol. 1978;49:24-39. doi: 10.1016/s0076-6879(78)49005-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验