Suppr超能文献

Differential effects of noxious and non-noxious input on neurones according to location in ventral periaqueductal grey or dorsal raphe nucleus.

作者信息

Sanders K H, Klein C E, Mayor T E, Heym C, Handwerker H O

出版信息

Brain Res. 1980 Mar 17;186(1):83-97. doi: 10.1016/0006-8993(80)90257-7.

Abstract

Nociceptive and non-nociceptive input to the dorsal raphe nucleus (DR) and to the surrounding periaqueductal grey (PAG) was studied in chloralose-anaesthetized rats. Single units in the midbrain responding to electrical stimulation of a coccygeal nerve were recorded with glass micropipettes. A fluorescence histochemical technique was applied to identify recording sites in the DR and PAG. 109 DR-units, 141 PAG-units and 95 units from surrounding structures were tested for responsiveness to electrical nerve stimulation. In 53% of the DR-units, but in only 20% of the PAG- and SN-units, ongoing activity was inhibited by electrical stimulation (I-units) while 42% of the PAG- and SN-units but only 24% of the DR-units were electrically excited (E-units). 40 E-units and 24 I-units were tested with repeated noxious radiant heat stimuli applied to the tail or hindpaws. 70% of the E-units were excited by heating, and in 54% of the I-units ongoing activity was inhibited by heating. The majority of the former units were located in the PAG, and most of the latter were proven to be DR-neurones. In 75% of the E-units and in 12.5% of the I-units the heat effect was in the opposite direction. The findings are discussed in terms of the now well-established role of the PAG-region in the descending control of pain. The properties of the PAG-E-units suggest that this system is involved in a negative feedback circuit by which pain transmission to the CNS limits itself. DR-I-units may be involved via an additional small loop with the PAG to disinhibit the activation of the PAG pain control system.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验