Suppr超能文献

神经网络检测导管-压力计系统的阻尼血压。

Catheter-manometer system damped blood pressures detected by neural nets.

作者信息

Prentza A, Wesseling K H

机构信息

Division of Medical Electrical Engineering, Eindhoven University of Technology, The Netherlands.

出版信息

Med Biol Eng Comput. 1995 Jul;33(4):589-95. doi: 10.1007/BF02522519.

Abstract

Degraded catheter-manometer systems cause distortion of blood pressure waveforms, often leading to erroneously resonant or damped waveforms, requiring waveforms quality control. We have tried multilayer perceptron back-propagation trained neural nets of varying architecture to detect damping on sets of normal and artificially damped brachial arterial pressure waves. A second-order digital simulation of a catheter-manometer system is used to cause waveform distortion. Each beat in the waveforms is represented by an 11 parameter input vector. From a group of normotensive or (borderline) hypertensive subjects, pressure waves are used to statistically test and train the neural nets. For each patient and category 5-10 waves are available. The best neural nets correctly classify about 75-85% of the individual beats as either adequate or damped. Using a single majority vote classification per subject per damped or adequate situation, the best neural nets correctly classify at least 16 of the 18 situations in nine test subjects (binomial P = 0.001). More importantly, these neural nets can always detect damping before clinically relevant parameters such as systolic pressure and computed stroke volume are reduced by more than 2%. Neural nets seem remarkably well adapted to solving such subtle problems as detecting a slight damping of arterial pressure waves before it affects waveforms to a clinically relevant degree.

摘要

性能下降的导管 - 压力计系统会导致血压波形失真,常常产生错误的共振或衰减波形,这就需要进行波形质量控制。我们尝试了不同架构的多层感知器反向传播训练神经网络,以检测正常和人工衰减的肱动脉压力波组中的衰减情况。使用导管 - 压力计系统的二阶数字模拟来造成波形失真。波形中的每个搏动由一个11参数输入向量表示。从一组血压正常或(临界)高血压受试者中获取压力波,用于对神经网络进行统计测试和训练。每个患者有5 - 10个波形可供使用。最佳的神经网络能将约75 - 85%的单个搏动正确分类为正常或衰减。对于每个受试者在衰减或正常情况下使用单一的多数投票分类法,最佳的神经网络在9名测试受试者的18种情况中至少正确分类了16种(二项式P = 0.001)。更重要的是,在诸如收缩压和计算出的每搏输出量等临床相关参数降低超过2%之前,这些神经网络总能检测到衰减。神经网络似乎非常适合解决此类细微问题,例如在动脉压力波的轻微衰减影响波形到临床相关程度之前就检测到它。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验