Suppr超能文献

Identification of the amino acid in the human immunodeficiency virus type 1 reverse transcriptase involved in the pyrophosphate binding of antiviral nucleoside triphosphate analogs and phosphonoformate. Implications for multiple drug resistance.

作者信息

Im G J, Tramontano E, Gonzalez C J, Cheng Y C

机构信息

Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06510.

出版信息

Biochem Pharmacol. 1993 Dec 14;46(12):2307-13. doi: 10.1016/0006-2952(93)90622-4.

Abstract

A recombinant clone of human immunodeficiency virus type 1 reverse transcriptase (HIV-1 RT) with reduced sensitivity to 3'-azido-3'-deoxythymidine 5'-triphosphate (AZTTP) and phosphonoformate (PFA), a pyrophosphate analog, has been obtained from the RNA of HTLV-IIIB infected cells using the polymerase chain reaction. The mutant HIV-1 RT retained polymerase activity and was cross-resistant to triphosphate forms of other nucleoside analogs including 2',3'-dideoxycytidine 5'-triphosphate, 2',3'-dideoxyadenosine 5'-triphosphate, and 3'-deoxy-2',3'-didehydrothymidine 5'-triphosphate (D4TTP), but remained sensitive to the non-nucleoside HIV-1 RT inhibitors, such as nevirapine and TIBO R82150. Sequence analysis of the mutant HIV-1 RT revealed a single amino acid substitution (Val-->Ala) at amino acid 90. The substitution of amino acid 90 by the closely related amino acids, such as Thr and Gly, also showed decreased sensitivity to AZTTP, D4TTP, and PFA. All these mutations at amino acid 90 also caused an alteration of Km for thymidine triphosphate. These results suggest that Val at this site plays a role in determining the interaction of the HIV-1 RT enzyme with the pyrophosphate group of deoxynucleoside triphosphate (dNTP) and that the hydrophobicity of the amino acid at this position was the most important determinant in the binding of HIV-1 RT to dNTP.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验