Suppr超能文献

人类免疫缺陷病毒1型逆转录酶和核糖核酸酶H作为病毒蛋白酶的底物。

Human immunodeficiency virus type-1 reverse transcriptase and ribonuclease H as substrates of the viral protease.

作者信息

Tomasselli A G, Sarcich J L, Barrett L J, Reardon I M, Howe W J, Evans D B, Sharma S K, Heinrikson R L

机构信息

Biochemistry Unit, Upjohn Laboratories, Kalamazoo, Michigan 49001.

出版信息

Protein Sci. 1993 Dec;2(12):2167-76. doi: 10.1002/pro.5560021216.

Abstract

A study has been made of the susceptibility of recombinant constructs of reverse transcriptase (RT) and ribonuclease H (RNase H) from human immunodeficiency virus type 1 (HIV-1) to digestion by the HIV-1 protease. At neutral pH, the protease attacks a single peptide bond, Phe440-Tyr441, in one of the protomers of the folded, active RT/RNase H (p66/p66) homodimer to give a stable, active heterodimer (p66/p51) that is resistant to further hydrolysis (Chattopadhyay, D., et al., 1992, J. Biol. Chem. 267, 14227-14232). The COOH-terminal p15 fragment released in the process, however, is rapidly degraded by the protease by cleavage at Tyr483-Leu484 and Tyr532-Leu533. In marked contrast to this p15 segment, both p66/p51 and a folded RNase H construct are stable to breakdown by the protease at neutral pH. It is only at pH values around 4 that these latter proteins appear to unfold and, under these conditions, the heterodimer undergoes extensive proteolysis. RNase H is also hydrolyzed at low pH, but cleavage takes place primarily at Gly436-Ala437 and at Phe440-Tyr441, and only much more slowly at residues 483, 494, and 532. This observation can be reconciled by inspection of crystallographic models of RNase H, which show that residues 483, 494, and 532 are relatively inaccessible in comparison to Gly436 and Phe440. Our results fit a model in which the p66/p66 homodimer exists in a conformation that mirrors that of the heterodimer, but with a p15 segment on one of the protomers that is structurally disordered to the extent that all of its potential HIV protease cleavage sites are accessible for hydrolysis.

摘要

对来自1型人类免疫缺陷病毒(HIV-1)的逆转录酶(RT)和核糖核酸酶H(RNase H)的重组构建体被HIV-1蛋白酶消化的敏感性进行了研究。在中性pH值下,蛋白酶攻击折叠的活性RT/RNase H(p66/p66)同型二聚体的一个原体中的单个肽键Phe440-Tyr441,产生稳定的活性异二聚体(p66/p51),该异二聚体对进一步水解具有抗性(Chattopadhyay,D.等人,1992年,《生物化学杂志》267,14227-14232)。然而,在此过程中释放的COOH末端p15片段会被蛋白酶在Tyr483-Leu484和Tyr532-Leu533处切割而迅速降解。与这个p15片段形成鲜明对比的是,p66/p51和折叠的RNase H构建体在中性pH值下对蛋白酶的分解都很稳定。只有在pH值约为4时,这些后者的蛋白质似乎才会展开,并且在这些条件下,异二聚体会发生广泛的蛋白水解。RNase H在低pH值下也会被水解,但切割主要发生在Gly436-Ala437和Phe440-Tyr441处,而在483、494和532位残基处的切割则要慢得多。通过检查RNase H的晶体学模型可以解释这一观察结果,该模型表明与Gly436和Phe440相比,483、494和532位残基相对难以接近。我们的结果符合一个模型,其中p66/p66同型二聚体以一种与异二聚体镜像的构象存在,但在一个原体上有一个p15片段,其结构无序到其所有潜在的HIV蛋白酶切割位点都可被水解的程度。

相似文献

引用本文的文献

2
Binding interface and impact on protease cleavage for an RNA aptamer to HIV-1 reverse transcriptase.
Nucleic Acids Res. 2020 Mar 18;48(5):2709-2722. doi: 10.1093/nar/gkz1224.
3
HIV-1 Reverse Transcriptase: A Metamorphic Protein with Three Stable States.
Structure. 2019 Mar 5;27(3):420-426. doi: 10.1016/j.str.2018.11.011. Epub 2019 Jan 10.
4
NMR structure of the HIV-1 reverse transcriptase thumb subdomain.
J Biomol NMR. 2016 Dec;66(4):273-280. doi: 10.1007/s10858-016-0077-2. Epub 2016 Nov 17.
6
Unfolding the HIV-1 reverse transcriptase RNase H domain--how to lose a molecular tug-of-war.
Nucleic Acids Res. 2016 Feb 29;44(4):1776-88. doi: 10.1093/nar/gkv1538. Epub 2016 Jan 14.
8
Structural integrity of the ribonuclease H domain in HIV-1 reverse transcriptase.
Proteins. 2015 Aug;83(8):1526-38. doi: 10.1002/prot.24843. Epub 2015 Jul 1.
9
In silico prediction of mutant HIV-1 proteases cleaving a target sequence.
PLoS One. 2014 May 5;9(5):e95833. doi: 10.1371/journal.pone.0095833. eCollection 2014.
10
The p66 immature precursor of HIV-1 reverse transcriptase.
Proteins. 2014 Oct;82(10):2343-52. doi: 10.1002/prot.24594. Epub 2014 May 12.

本文引用的文献

1
Crystallographic analyses of an active HIV-1 ribonuclease H domain show structural features that distinguish it from the inactive form.
Acta Crystallogr D Biol Crystallogr. 1993 Jul 1;49(Pt 4):423-7. doi: 10.1107/S0907444993002409.
3
Structure-based inhibitors of HIV-1 protease.
Annu Rev Biochem. 1993;62:543-85. doi: 10.1146/annurev.bi.62.070193.002551.
4
A vector projection approach to predicting HIV protease cleavage sites in proteins.
Proteins. 1993 Jun;16(2):195-204. doi: 10.1002/prot.340160206.
5
Cleavage of structural proteins during the assembly of the head of bacteriophage T4.
Nature. 1970 Aug 15;227(5259):680-5. doi: 10.1038/227680a0.
6
Molecular characterization of gag proteins from simian immunodeficiency virus (SIVMne).
J Virol. 1988 Aug;62(8):2587-95. doi: 10.1128/JVI.62.8.2587-2595.1988.
7
Active human immunodeficiency virus protease is required for viral infectivity.
Proc Natl Acad Sci U S A. 1988 Jul;85(13):4686-90. doi: 10.1073/pnas.85.13.4686.
8
HIV-1 protease specificity of peptide cleavage is sufficient for processing of gag and pol polyproteins.
Biochem Biophys Res Commun. 1988 Oct 14;156(1):297-303. doi: 10.1016/s0006-291x(88)80839-8.
9
Proteolytic processing of polyproteins in the replication of RNA viruses.
Biochemistry. 1989 Dec 26;28(26):9881-90. doi: 10.1021/bi00452a001.
10
Characterization of highly immunogenic p66/p51 as the reverse transcriptase of HTLV-III/LAV.
Science. 1986 Mar 14;231(4743):1289-91. doi: 10.1126/science.2418504.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验