Trapp B D, Kidd G J, Hauer P, Mulrenin E, Haney C A, Andrews S B
Department of Neurosciences, Cleveland Clinic Foundation, Ohio 44195.
J Neurosci. 1995 Mar;15(3 Pt 1):1797-807. doi: 10.1523/JNEUROSCI.15-03-01797.1995.
Schwann cells polarize their surface membranes into several biochemically and ultrastructurally discrete regions of the myelin internode. To form these membrane domains, Schwann cells must sort, transport, and target membrane proteins appropriately. In this study, microtubule disassembly, confocal microscopy, and electron microscopic immunocytochemistry were used to investigate mechanisms involved in targeting P0 protein (P0), the myelin-associated glycoprotein (MAG), and laminin to different plasma membrane domains in myelinating Schwann cells from 35-d-old rat sciatic nerve. After microtubule disassembly by colchicine, all three proteins accumulated in Schwann cell perinuclear cytoplasm, indicating that microtubules are necessary for their transport. The distributions of Golgi membranes, endoplasmic reticulum, and intermediate filaments were also altered by colchicine treatment. Electron microscopic immunocytochemical studies indicated that P0 and MAG are sorted into separate carrier vesicles as they exit the trans-Golgi network. Following microtubule disassembly, P0-rich carrier vesicles fused and formed myelin-like membrane whorls, whereas MAG-rich carrier vesicles fused and formed mesaxon-like membrane whorls. Microtubule disassembly did not result in mistargeting of either P0 or MAG to surface membranes. These results indicate that following sorting in the trans-Golgi network, certain carrier vesicles are transported along the myelin internode on microtubules; however, microtubules do not appear to target these vesicles selectively to specific sites. The targeting of P0-, MAG-, and laminin-rich carrier vesicles to specific sites most likely occurs by ligand receptor binding mechanisms that permit fusion of carrier vesicles only with the appropriate target membrane.
施万细胞将其表面膜极化形成髓鞘结间体中几个生物化学和超微结构上不同的区域。为了形成这些膜结构域,施万细胞必须对膜蛋白进行适当的分选、运输和靶向定位。在本研究中,利用微管拆卸、共聚焦显微镜和电子显微镜免疫细胞化学技术,研究了35日龄大鼠坐骨神经髓鞘化施万细胞中,将P0蛋白(P0)、髓鞘相关糖蛋白(MAG)和层粘连蛋白靶向运输到不同质膜结构域的机制。用秋水仙碱使微管拆卸后,所有这三种蛋白都积聚在施万细胞的核周细胞质中,表明微管对它们的运输是必需的。秋水仙碱处理也改变了高尔基体膜、内质网和中间丝的分布。电子显微镜免疫细胞化学研究表明,P0和MAG在离开反式高尔基体网络时被分选到不同的载体小泡中。微管拆卸后,富含P0的载体小泡融合并形成髓鞘样膜涡旋,而富含MAG的载体小泡融合并形成轴系膜样膜涡旋。微管拆卸并未导致P0或MAG错误靶向到表面膜。这些结果表明,在反式高尔基体网络中进行分选后,某些载体小泡沿着微管在髓鞘结间体上运输;然而,微管似乎并未将这些小泡选择性地靶向到特定位点。富含P0、MAG和层粘连蛋白的载体小泡靶向到特定位点很可能是通过配体受体结合机制实现的,该机制仅允许载体小泡与适当的靶膜融合。