Ma C K, Kolesnikow T, Rayner J C, Simons E L, Yim H, Simons R W
Department of Microbiology and Molecular Genetics, University of California, Los Angeles 90024.
Mol Microbiol. 1994 Dec;14(5):1033-47. doi: 10.1111/j.1365-2958.1994.tb01337.x.
RNA secondary structure is important in a wide variety of biological processes, but relatively little is known about the pathways and kinetics of RNA folding. When the IS10 transposase (tnp) gene is transcribed from a promoter outside the element, little increase in tnp expression is observed. This protection from outside transcription (pot) occurs at the translational level, presumably resulting from mRNA secondary structure proposed to sequester the tnp ribosome-binding site. Here, we confirm the pot RNA structure and show that it blocks 30S ribosomal subunit binding in vitro. Point mutations that abolish protection in vivo map to the pot structure. Surprisingly, these pot mutations do not severely alter the pot secondary structure or increase 30S subunit binding in vitro, except in one case. Using an oligonucleotide hybridization assay, we show that most of the pot mutations slow the kinetics of pot structure formation, with little or no effect on the inhibitory function of the final structure. Moreover, a suppressor mutation reverses this effect. We propose a pathway for pot mRNA folding that is consistent with the mutations and implicates the formation of important kinetic intermediates. The significance of these observations for the RNA folding problem in general is discussed.
RNA二级结构在多种生物学过程中都很重要,但人们对RNA折叠的途径和动力学了解相对较少。当IS10转座酶(tnp)基因从元件外部的启动子转录时,tnp表达几乎没有增加。这种对外源转录的保护(pot)发生在翻译水平,推测是由于mRNA二级结构将tnp核糖体结合位点隔离所致。在这里,我们证实了pot RNA结构,并表明它在体外能阻断30S核糖体亚基的结合。在体内消除保护作用的点突变定位在pot结构上。令人惊讶的是,这些pot突变除了在一种情况下外,并没有严重改变pot二级结构或增加体外30S亚基的结合。使用寡核苷酸杂交试验,我们表明大多数pot突变减缓了pot结构形成的动力学,对最终结构的抑制功能几乎没有影响或没有影响。此外,一个抑制突变逆转了这种效应。我们提出了一种与突变一致的pot mRNA折叠途径,并暗示了重要动力学中间体的形成。还讨论了这些观察结果对一般RNA折叠问题的意义。