Nielsen S, Pallone T, Smith B L, Christensen E I, Agre P, Maunsbach A B
Department of Cell Biology, University of Aarhus, Denmark.
Am J Physiol. 1995 Jun;268(6 Pt 2):F1023-37. doi: 10.1152/ajprenal.1995.268.6.F1023.
The localization of aquaporin-1 water channels (AQP-1) in nephron and vascular structures in rat kidney were characterized, because vascular bundles are known to play a key role in urinary concentration. Immunohistochemistry and immunoelectron microscopy were applied on thin cryosections or ultrathin Lowicryl sections, using an optimized freeze-substitution method. Within the vascular bundles, AQP-1 is localized in descending thin limbs (DTL) of short nephrons in apical and basolateral membranes. The expression in DTL of short nephrons is considerably lower compared with the expression in long nephrons, consistent with the known lower osmotic water permeability of this segment. Furthermore, DTL of short nephrons expressing AQP-1 continue abruptly into a thin limb segment without AQP-1. This suggests the existence of a novel thin limb epithelium in the outer medulla. Extensive expression of AQP-1 is observed in apical and basolateral membranes of DTL of long nephrons, which are localized in the periphery of the vascular bundles. The expression decreases along the axis of long nephron DTLs in correlation with the known water permeability characteristics of thin limb segments. DTLs of both short and long nephrons continue abruptly into thin limb segments without AQP-1 expression, revealing an abrupt cell-to-cell transition. In vasa recta, AQP-1 is selectively localized in the nonfenestrated endothelium of descending vasa recta, whereas the fenestrated endothelium of ascending vesa recta and peritubular capillaries do not express AQP-1. AQP-1 is localized in both apical and basolateral plasma membranes, which is logical for transendothelial water transport. Isolated perfused descending vasa recta display high water permeability, and, unlike sodium permeability, diffusional water permeability is partly inhibited by mercurials, thus substantiating the presence of mercurial-sensitive water channels in descending vasa recta. Thus AQP-1 is localized in DTL and descending vasa recta within vascular bundles, and AQP-1 expression in DTL segments is in exact concordance with the known water permeability characteristics, strongly supporting that AQP-1 is the major constitutive water channel of the nephron.
由于已知血管束在尿液浓缩过程中起关键作用,因此对大鼠肾脏肾单位和血管结构中 aquaporin-1 水通道(AQP-1)的定位进行了表征。采用优化的冷冻替代法,对薄冰冻切片或超薄 Lowicryl 切片进行免疫组织化学和免疫电子显微镜检测。在血管束内,AQP-1 定位于短肾单位降支细段(DTL)的顶端和基底外侧膜。与长肾单位相比,短肾单位 DTL 中的表达明显较低,这与该节段已知的较低渗透水通透性一致。此外,表达 AQP-1 的短肾单位 DTL 突然延续为无 AQP-1 的细段。这表明在外髓质中存在一种新的细段上皮。在长肾单位 DTL 的顶端和基底外侧膜中观察到 AQP-1 的广泛表达,长肾单位 DTL 位于血管束的周边。其表达沿长肾单位 DTL 的轴下降,与细段已知的水通透性特征相关。短肾单位和长肾单位的 DTL 均突然延续为无 AQP-1 表达的细段,揭示了细胞间的突然转变。在直小血管中,AQP-1 选择性地定位于降支直小血管的非窗孔内皮,而升支直小血管和肾小管周围毛细血管的窗孔内皮不表达 AQP-1。AQP-1 定位于顶端和基底外侧质膜,这对于跨内皮水转运来说是合理的。分离灌注的降支直小血管显示出高水通透性,并且与钠通透性不同,扩散性水通透性部分受到汞剂抑制,从而证实降支直小血管中存在汞敏感性水通道。因此,AQP-1 定位于血管束内的 DTL 和降支直小血管中,并且 DTL 段中 AQP-1 的表达与已知的水通透性特征完全一致,有力地支持 AQP-1 是肾单位的主要组成性水通道。