Suppr超能文献

[神经化学系]

[Department of neurochemistry].

作者信息

Lishko V K, Himmelreich N G

出版信息

Ukr Biokhim Zh (1978). 1995 May-Jun;67(3):8-22.

PMID:7571077
Abstract

By the beginning of 1980s the questions concerning the mechanism of neurosecretion, the mode of neurotoxin action on this process and the mechanism of protein insertion into biological membranes were the principal directions of studies. Two views on the process of insertion of membrane proteins into, and transport across the biological membranes have been proposed. One hypothesis on membrane biogenesis describes the mechanism of incorporation of protein molecules into phospholipid matrix as a co-translational process. It starts with the synthesis of a hydrophobic N-terminal signal sequence of the protein destined to span the bilayer. In this case the energy of elongation was supposed to be utilized for insertion of the protein into hydrophobic core of the bilayer. Using the model system of co-translational translocation that consisted of liposomes and cell-free translational system including wheat germ extract and poly(A) RNA obtained from the mammary gland it has been studied whether the liposomes could serve as acceptor of synthesized secretory proteins. It is shown that in the presence of casein mRNA the 14-C-labeled product of translation is accumulated inside liposomes. When mRNA for globin, a nonsecretory protein, is translated in this cell-free system, 14-C-label is not found in the internal volume of liposomes. The polypeptides extracted from liposomes after their incubation in the system of casein mRNA translation interact specifically with anti-casein antibodies (D. I. Balkov, A. V. El'skaya, V. K. Lishko et al., 1988). These data provide the evidence that the transfer of synthesizing casein through bilayer lipid membrane does not require a specific receptor. Insertion and transfer of this protein occur co-translationally, due to the interaction of "signal peptide" with membrane lipids. The second model of the assembly of protein into membrane supposes an ability of hydrophilic proteins to cooperate with the phospholipid bilayer. As a result of such cooperation the polypeptide changes its conformation adequately to the hydrophilic environment and is integrated with the bilayer. This second model suggests the existence of water soluble precursors of membrane proteins localized in the cell cytoplasm. The last idea was studied in experiment with a specific hydrophilic protein from the cytoplasmic fraction of excitable tissues. Tetrodotoxin-sensitive (TTX-sensitive) structures have been found in soluble fractions of the brain, heart and skeletal muscle homogenates (V. K. Lishko, M. K. Malysheva, A. V. Stefanov, 1977). Initially we prepared proteoliposomes by sonication of a phospholipid suspension with the supernatants of tissue homogenates.(ABSTRACT TRUNCATED AT 250 WORDS)

摘要

到20世纪80年代初,有关神经分泌机制、神经毒素对该过程的作用方式以及蛋白质插入生物膜的机制等问题成为主要研究方向。关于膜蛋白插入生物膜并在其中运输的过程,人们提出了两种观点。一种关于膜生物发生的假说是将蛋白质分子掺入磷脂基质的过程描述为共翻译过程。它始于合成注定要跨越双层膜的蛋白质的疏水N端信号序列。在这种情况下,延伸能量被认为用于将蛋白质插入双层膜的疏水核心。利用由脂质体和无细胞翻译系统组成的共翻译转运模型系统,该无细胞翻译系统包括小麦胚芽提取物和从乳腺获得的聚腺苷酸RNA,研究了脂质体是否可以作为合成的分泌蛋白的受体。结果表明,在酪蛋白mRNA存在的情况下,14-C标记的翻译产物在脂质体内积累。当在这个无细胞系统中翻译球蛋白(一种非分泌蛋白)的mRNA时,在脂质体内部体积中未发现14-C标记。在酪蛋白mRNA翻译系统中孵育后从脂质体中提取的多肽与抗酪蛋白抗体发生特异性相互作用(D. I. 巴尔科夫、A. V. 叶利斯卡娅、V. K. 利什科等人,1988年)。这些数据证明,合成的酪蛋白通过双层脂质膜的转移不需要特定受体。由于“信号肽”与膜脂的相互作用,这种蛋白质的插入和转移是共翻译发生的。蛋白质组装到膜中的第二种模型假定亲水性蛋白质具有与磷脂双层协作的能力。这种协作的结果是多肽使其构象充分适应亲水环境并与双层膜整合。第二种模型表明存在位于细胞质中的膜蛋白的水溶性前体。最后一个观点在对来自可兴奋组织细胞质部分的一种特定亲水性蛋白质的实验中进行了研究。在脑、心脏和骨骼肌匀浆的可溶部分中发现了对河豚毒素敏感(TTX敏感)的结构(V. K. 利什科、M. K. 马利舍娃、A. V. 斯特凡诺夫,1977年)。最初,我们通过将磷脂悬浮液与组织匀浆的上清液进行超声处理来制备蛋白脂质体。(摘要截断于250字)

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验