Suppr超能文献

二维核磁共振光谱和分子动力学模拟在A组链球菌细胞壁多糖对应寡糖构象分析中的应用

Application of two-dimensional NMR spectroscopy and molecular dynamics simulations to the conformational analysis of oligosaccharides corresponding to the cell-wall polysaccharide of Streptococcus group A.

作者信息

Kreis U C, Varma V, Pinto B M

机构信息

Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada.

出版信息

Int J Biol Macromol. 1995 Jun;17(3-4):117-30. doi: 10.1016/0141-8130(95)92678-j.

Abstract

This paper describes the use of a protocol for conformational analysis of oligosaccharide structures related to the cell-wall polysaccharide of Streptococcus group A. The polysaccharide features a branched structure with an L-rhamnopyranose (Rhap) backbone consisting of alternating alpha-(1-->2) and alpha-(1-->3) links and D-N-acetylglucosamine (GlcpNAc) residues beta-(1-->3)-connected to alternating rhamnose rings: [formula: see text] Oligomers consisting of three to six residues have been synthesized and nuclear magnetic resonance (NMR) assignments have been made. The protocol for conformational analysis of the solution structure of these oligosaccharides involves experimental and theoretical methods. Two-dimensional NMR spectroscopy methods (TOCSY, ROESY and NOESY) are utilized to obtain chemical shift data and proton-proton distances. These distances are used as constraints in 100 ps molecular dynamics simulations in water using QUANTA and CHARMm. In addition, the dynamics simulations are performed without constraints. ROE build-up curves are computed from the averaged structures of the molecular dynamics simulations using the CROSREL program and compared with the experimental curves. Thus, a refinement of the initial structure may be obtained. The alpha-(1-->2) and the beta-(1-->3) links are unambiguously defined by the observed ROE cross peaks between the A-B',A'-B and C-B,C'-B' residues, respectively. The branch-point of the trisaccharide CBA' is conformationally well-defined. Assignment of the conformation of the B-A linkage (alpha-(1-->3)) was problematic due to TOCSY relay, but could be solved by NOESY and T-ROESY techniques. A conformational model for the polysaccharide is proposed.

摘要

本文描述了一种用于分析与A组链球菌细胞壁多糖相关的寡糖结构构象的方法。该多糖具有分支结构,其L-鼠李吡喃糖(Rhap)主链由交替的α-(1→2)和α-(1→3)连接以及β-(1→3)连接到交替鼠李糖环的D-N-乙酰葡糖胺(GlcpNAc)残基组成:[化学式:见原文] 已合成了由三到六个残基组成的寡聚物,并进行了核磁共振(NMR)归属。这些寡糖溶液结构的构象分析方法涉及实验和理论方法。利用二维NMR光谱方法(TOCSY、ROESY和NOESY)获取化学位移数据和质子-质子距离。这些距离在使用QUANTA和CHARMm在水中进行的100皮秒分子动力学模拟中用作约束条件。此外,还进行了无约束的动力学模拟。使用CROSREL程序从分子动力学模拟的平均结构计算ROE累积曲线,并与实验曲线进行比较。因此,可以对初始结构进行优化。α-(1→2)和β-(1→3)连接分别由A-B'、A'-B和C-B、C'-B'残基之间观察到的ROE交叉峰明确界定。三糖CBA'的分支点在构象上定义明确。由于TOCSY接力,B-A连接(α-(1→3))的构象归属存在问题,但可以通过NOESY和T-ROESY技术解决。提出了该多糖的构象模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验