Zhang M Q, Marr T G
Cold Spring Harbor Laboratory, New York 11724, USA.
J Theor Biol. 1995 May 21;174(2):119-29. doi: 10.1006/jtbi.1995.0085.
We propose a generating functional method--random path analysis (RPA)--that generalizes the classical dynamic programming (DP) method widely used in sequence alignments. For a given cost function, DP is a deterministic method that finds an optimal alignment by minimizing the total cost function for all possible alignments. By allowing uncertainty, RPA is a statistical method that weights fluctuating alignments by probabilities. Therefore, DP maybe thought of as the deterministic limit of RPA when the fluctuations approach zero. DP is the method of choice if one is only interested in optimal alignment. But we argue that, when information beyond the optimal alignment is desired, RPA gives a natural extension of DP for biological applications. As an algebraic approach, RPA is computationally intensive for long sequences, but it can provide better parametric control for developing analytical or perturbational results and it is more informative and biologically relevant. The idea of RPA opens up new opportunities for simulational approaches and more importantly it suggests a novel hardware implementation that has the potential of improving the way a sequence alignment is done. Here we focus on deriving a mathematically rigorous solution to RPA both in its combinatorial form and in its graphical representation; this puts DP in logical perspective under a more general conceptual framework.
我们提出了一种生成泛函方法——随机路径分析(RPA),它推广了序列比对中广泛使用的经典动态规划(DP)方法。对于给定的代价函数,DP是一种确定性方法,通过最小化所有可能比对的总代价函数来找到最优比对。通过允许不确定性,RPA是一种统计方法,它根据概率对波动的比对进行加权。因此,当波动趋近于零时,DP可以被视为RPA的确定性极限。如果只对最优比对感兴趣,DP是首选方法。但我们认为,当需要最优比对之外的信息时,RPA为生物学应用提供了DP的自然扩展。作为一种代数方法,RPA对于长序列计算量很大,但它可以为开发分析或微扰结果提供更好的参数控制,并且它更具信息性且与生物学相关。RPA的思想为模拟方法开辟了新机会,更重要的是,它提出了一种新颖的硬件实现方式,有可能改进序列比对的方式。在这里,我们专注于推导RPA在其组合形式和图形表示中的数学严格解;这将DP置于更一般概念框架下的逻辑视角中。