Maysinger D, Piccardo P, Liberini P, Jalsenjak I, Cuello C
Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada.
Neurochem Int. 1994 May;24(5):495-503. doi: 10.1016/0197-0186(94)90097-3.
Genetically engineered rat fibroblasts producing nerve growth factor (NGF) were encapsulated in alginate-polylysine-alginate gels with the objective to produce viable "minifactories" continuously producing and secreting NGF into the rat brain. Microencapsulated fibroblasts (NGF secretors and NGF non-secretors) were placed onto the surface of the lesioned rat cortex (unilateral devascularizing lesion) and animals were sacrificed 30 days after surgery. Fibroblasts NGF-non secreters normally produce tumors after implantation, therefore, they were irradiated prior to encapsulation. Three other experimental groups were studied in parallel: non-lesioned (controls), lesioned rats receiving "empty" alginate spheres and lesioned animals without treatment and microspheres. Biochemical analysis of microdissected brain tissues of lesioned animals treated with encapsulated NGF-secretor fibroblasts showed a significant increase in choline acetyltransferase (ChAT) activity in cortices adjacent to the lesion but not far from it (entorhinal cortex). This may indicate a gradient of concentration of the released NGF and/or differential responsivity of lesioned vs non-lesioned target tissue. ChAT enzymatic activity in the microdissected nucleus basalis magnocellularis (NBM) was significantly decreased (P < 0.05) in all lesioned animals treated with spheres without fibroblasts and those with fibroblasts not secreting NGF. Morphometric analysis of ChAT-IR and low affinity NGF-receptor IR cholinergic neurons in the middle portion of the NBM shows a prevention of neuronal shrinkage and extensive neuropil in animals treated with microencapsulated NGF-secretor fibroblasts. The results of this study demonstrate that NGF from encapsulated genetically engineered fibroblasts can be secreted for at least long enough to prevent degenerative changes of cholinergic neurons in the NBM.
对产生神经生长因子(NGF)的基因工程大鼠成纤维细胞进行藻酸盐-聚赖氨酸-藻酸盐凝胶包封,目的是构建能够持续向大鼠脑内产生并分泌NGF的活体“微型工厂”。将微囊化的成纤维细胞(NGF分泌细胞和NGF非分泌细胞)置于受损大鼠皮质表面(单侧去血管病变),术后30天处死动物。NGF非分泌型成纤维细胞植入后通常会产生肿瘤,因此,在包封前对其进行了辐照。同时研究了另外三个实验组:未受损组(对照组)、接受“空”藻酸盐球的受损大鼠以及未接受治疗和微球的受损动物。对用包封的NGF分泌型成纤维细胞处理的受损动物的显微解剖脑组织进行生化分析,结果显示,在靠近病变但距离不远(内嗅皮质)的皮质中,胆碱乙酰转移酶(ChAT)活性显著增加。这可能表明释放的NGF存在浓度梯度和/或受损与未受损靶组织的反应性差异。在用无成纤维细胞的球体处理的所有受损动物以及用不分泌NGF的成纤维细胞处理的动物中,显微解剖的基底大细胞核(NBM)中的ChAT酶活性显著降低(P<0.05)。对NBM中部ChAT免疫反应性和低亲和力NGF受体免疫反应性胆碱能神经元的形态计量分析显示,在用微囊化NGF分泌型成纤维细胞处理的动物中,神经元萎缩得到预防,神经纤维网广泛。本研究结果表明,来自包封的基因工程成纤维细胞的NGF可以分泌至少足够长的时间,以防止NBM中胆碱能神经元的退行性变化。