Suppr超能文献

神经网络在鉴别功能筛查小细胞低色素性贫血红细胞方面的优势。

Superiority of neural networks over discriminant functions for thalassemia minor screening of red blood cell microcytosis.

作者信息

Erler B S, Vitagliano P, Lee S

机构信息

Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.

出版信息

Arch Pathol Lab Med. 1995 Apr;119(4):350-4.

PMID:7726727
Abstract

We compared the utility of screening red blood cell (RBC) microcytosis for thalassemia minor using backpropagation neural networks, linear and quadratic discriminant functions, and previously reported discriminant functions based on RBC indices. Screening classification of cases representing possible thalassemia minor (n = 60) and non-thalassemic microcytosis (n = 60) were studied. Among eight RBC indices evaluated, the RBC count was the best univariate discriminant function. Multivariate stepwise discriminant analysis selected the RBC count, the mean corpuscular volume, and the percentage of hypochromic cells as the most discriminatory subset of RBC indices. Optimized linear and quadratic discriminant functions based on these indices performed better than seven previously reported multivariate discriminant functions. However, optimized neural networks were superior to all other discriminant methods studied, averaging 94.1% discriminant efficiency, 94.2% sensitivity, and 94.2% specificity.

摘要

我们比较了使用反向传播神经网络、线性和二次判别函数以及先前报道的基于红细胞指数的判别函数来筛查轻型地中海贫血红细胞(RBC)小红细胞症的效用。研究了代表可能轻型地中海贫血的病例(n = 60)和非地中海贫血性小红细胞症(n = 60)的筛查分类。在评估的八项红细胞指数中,红细胞计数是最佳的单变量判别函数。多变量逐步判别分析选择红细胞计数、平均红细胞体积和低色素细胞百分比作为红细胞指数中最具区分性的子集。基于这些指数的优化线性和二次判别函数比先前报道的七个多变量判别函数表现更好。然而,优化后的神经网络优于所研究的所有其他判别方法,平均判别效率为94.1%,灵敏度为94.2%,特异性为94.2%。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验