Razi N, Lindahl U
Department of Medical and Physiological Chemistry, University of Uppsala, Sweden.
J Biol Chem. 1995 May 12;270(19):11267-75. doi: 10.1074/jbc.270.19.11267.
O-Sulfation at C-3 of N-sulfated GlcN units concludes polymer modification and the formation of antithrombin binding regions in the biosynthesis of heparin/heparan sulfate. The resulting GlcNSO3(3-OSO3) units are largely restricted to heparin chains with high affinity for antithrombin (HA heparin). Low affinity (LA) heparin fails to serve as a substrate in the 3-O-sulfotransferase reaction yet contains potential 3-O-sulfate acceptor sites (Kusche, M., Torri, G., Casu, B., and Lindahl, U. (1990) J. Biol. Chem. 265, 7292-7300), as verified in the present study using a novel sequencing procedure. O-Desulfated, re-N-sulfated LA heparin, as well as an octasaccharide fraction isolated after heparinase I digestion of LA heparin, both yielded labeled HA components following incubation with solubilized mouse mastocytoma microsomal enzymes and [35S]adenosine 3'-phosphate 5'phosphosulfate (PAPS), suggesting that the 3-O-sulfo-transferase may be inhibited by sulfated saccharide sequences outside the 3-O-sulfate acceptor region. Indeed, the addition of LA heparin precluded enzymatic 3-O-sulfation of a synthetic pentasaccharide substrate. The Km for the pentasaccharide was determined to approximately be 6 microM. Incubations of mixed pentasaccharide substrate and saccharide inhibitors revealed Ki values for intact LA heparin and for a heparin octasaccharide fraction of approximately 1.3 and approximately 0.7 microM, respectively. Inhibition experiments with selectively desulfated heparin indicated that both IdoA 2-O-sulfate and GlcN 6-O-sulfate groups contributed to the inhibition of the 3-O-sulfotransferase. By contrast, chondroitin sulfate or dermatan sulfate showed no significant inhibitory activity. It is proposed that the regulation of GlcN 3-O-sulfation during biosynthesis of heparin/heparan sulfate depends on the topological organization of the membrane-bound enzyme machinery in the intact cell.
在硫酸乙酰肝素/肝素的生物合成过程中,N - 硫酸化葡糖胺(GlcN)单元C - 3位的O - 硫酸化完成了聚合物修饰以及抗凝血酶结合区域的形成。所产生的GlcNSO3(3 - OSO3)单元主要存在于对抗凝血酶具有高亲和力的肝素链(高亲和力肝素,HA肝素)中。低亲和力(LA)肝素在3 - O - 磺基转移酶反应中不能作为底物,但含有潜在的3 - O - 硫酸酯受体位点(库舍,M.,托里,G.,卡苏,B.,和林达尔,U.(1990年)《生物化学杂志》265,7292 - 7300),本研究使用一种新的测序方法对此进行了验证。用溶菌酶I消化LA肝素后分离得到的O - 脱硫酸化、再N - 硫酸化的LA肝素以及八糖级分,在用溶解的小鼠肥大细胞瘤微粒体酶和[35S]腺苷3'-磷酸5'-磷酸硫酸酯(PAPS)孵育后,都产生了标记的HA组分,这表明3 - O - 磺基转移酶可能受到3 - O - 硫酸酯受体区域外的硫酸化糖序列的抑制。事实上,添加LA肝素会阻止合成五糖底物的酶促3 - O - 硫酸化。该五糖的Km约为6 microM。混合五糖底物和糖类抑制剂的孵育显示,完整LA肝素和肝素八糖级分的Ki值分别约为1.3 microM和约0.7 microM。用选择性脱硫酸化肝素进行的抑制实验表明,艾杜糖醛酸2 - O - 硫酸酯和葡糖胺6 - O - 硫酸酯基团都对3 - O - 磺基转移酶有抑制作用。相比之下,硫酸软骨素或硫酸皮肤素没有显著的抑制活性。有人提出,在硫酸乙酰肝素/肝素生物合成过程中GlcN 3 - O - 硫酸化的调节取决于完整细胞中膜结合酶机制的拓扑组织。