Ray S, Mukherji S, Bhaduri A
Indian Institute of Chemical Biology, Calcutta.
J Biol Chem. 1995 May 12;270(19):11383-90. doi: 10.1074/jbc.270.19.11383.
Efficient fluorescence energy transfer from aromatic residues to the pyridine moiety of the bound coenzyme (NAD) of UDP-glucose 4-epimerase from Kluyveromyces fragilis had been reported earlier (Mukherji, S., and Bhaduri, A. (1992) J. Biol. Chem. 267, 11709-11713). We have employed N-bromosuccinimide (NBS) to identify tryptophan as the exclusive aromatic donor in the energy transfer. The characteristic UV absorption spectrum associated with Trp oxidation is observed during NBS modification of two of the four Trp residues of native epimerase along with concomitant inactivation of the enzyme. Excellent correlation between the observed inactivation and abolition of fluorescence energy transfer to coenzyme from Trp in epimerase upon treatment with NBS implicates the involvement of the same two tryptophans in both catalytic activity and fluorescence energy transfer. SDS-polyacrylamide gel electrophoresis and fluorescence data preclude gross structural/conformational changes in epimerase due to NBS oxidation. The susceptible tryptophans do not reside at the substrate binding site as substrates and UMP fail to protect against NBS modification. However, failure of sodium borohydride to reduce the bound NAD in the NBS-inactivated epimerase suggests that the reactive tryptophans are close to the coenzyme. Tryptophan fluorescence lifetime values of 1.9 and 3.9 ns for the native and 3.5 ns for the NBS-modified epimerase, complemented by a linear Stern-Volmer plot (effective Stern-Volmer constant = 2.85 M-1) of acrylamide quenching, suggest that the two key tryptophans are buried close to an intrinsic quencher, presumably NAD.
较早前已有报道,脆壁克鲁维酵母UDP - 葡萄糖4 - 表异构酶中,芳香族残基与结合辅酶(NAD)的吡啶部分之间能发生高效的荧光能量转移(Mukherji, S., and Bhaduri, A. (1992) J. Biol. Chem. 267, 11709 - 11713)。我们使用N - 溴代琥珀酰亚胺(NBS)来确定色氨酸是能量转移中唯一的芳香族供体。在对天然表异构酶的四个色氨酸残基中的两个进行NBS修饰时,观察到了与色氨酸氧化相关的特征紫外吸收光谱,同时酶也失活。用NBS处理后,表异构酶中观察到的失活与色氨酸向辅酶的荧光能量转移的消除之间具有良好的相关性,这表明相同的两个色氨酸参与了催化活性和荧光能量转移。SDS - 聚丙烯酰胺凝胶电泳和荧光数据排除了由于NBS氧化导致表异构酶发生总体结构/构象变化的可能性。易感色氨酸并不位于底物结合位点,因为底物和UMP无法保护其免受NBS修饰。然而,硼氢化钠无法还原NBS失活的表异构酶中结合的NAD,这表明反应性色氨酸靠近辅酶。天然表异构酶的色氨酸荧光寿命值为1.9和3.9 ns,NBS修饰的表异构酶为3.5 ns,丙烯酰胺猝灭的线性斯特恩 - 沃尔默图(有效斯特恩 - 沃尔默常数 = 2.85 M⁻¹)表明,这两个关键色氨酸埋藏在靠近一个内在猝灭剂(可能是NAD)的位置。