Suppr超能文献

Changing patterns of Fos expression in brainstem catecholaminergic neurons during the rat oestrous cycle.

作者信息

Condé G L, Bicknell R J, Herbison A E

机构信息

Laboratory of Neuroendocrinology, Babraham Institute, Cambridge, UK.

出版信息

Brain Res. 1995 Feb 20;672(1-2):68-76. doi: 10.1016/0006-8993(94)01385-u.

Abstract

Brainstem catecholaminergic neurons are believed to play an important role in the activation of luteinising hormone-releasing hormone (LHRH) neurons on the afternoon of proestrus which results in the luteinising hormone (LH) surge. To examine the respective roles of brainstem A1 and A2 neurons and the adjoining C1 and C2 adrenergic cells at this time, we have examined the patterns of Fos-immunoreactivity within tyrosine hydroxylase (TH) and phenylethanolamine-N-methyl transferase (PNMT) neurons during diestrus and proestrus. Initial studies demonstrated that the LH surge commenced at approximately 15:00 h in proestrous animals and that peak plasma levels of LH were observed between 16:00 and 17:00 h. Groups of cycling female rats (n = 6) were then perfused between 09:00 and 11:00 (diestrus early) and 18:00 to 19:30 h (diestrus late) on diestrus and at the same times on proestrus (proestrus early and proestrus late). Double-labelling immunocytochemistry revealed little Fos expression by adrenergic neurons of the C1 or C2 cell groups and this did not change significantly between any of the experimental groups. Analysis of the A2 region was divided into rostral, middle and caudal divisions and all regions showed a significant (P < 0.01) increase in the number of Fos-expressing TH neurons (up to 35% of TH cells) in proestrus early animals compared with diestrus and proestrus late rats. In the A1 region, a significant increase in the number of TH neurons expressing Fos (approximately 33%) was detected in both proestrus early (P < 0.05) and diestrus early (P < 0.01) rats compared with animals perfused in the late afternoon (approximately 12%).(ABSTRACT TRUNCATED AT 250 WORDS)

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验