Suppr超能文献

用于文库筛选的高效合并设计

Efficient pooling designs for library screening.

作者信息

Bruno W J, Knill E, Balding D J, Bruce D C, Doggett N A, Sawhill W W, Stallings R L, Whittaker C C, Torney D C

机构信息

Center for Human Genome Studies, Life Sciences Division, Los Alamos National Laboratory, New Mexico 87545, USA.

出版信息

Genomics. 1995 Mar 1;26(1):21-30. doi: 10.1016/0888-7543(95)80078-z.

Abstract

We describe efficient methods for screening clone libraries, based on pooling schemes that we call "random k-sets designs." In these designs, the pools in which any clone occurs are equally likely to be any possible selection of k from the v pools. The values of k and v can be chosen to optimize desirable properties. Random k-sets designs have substantial advantages over alternative pooling schemes: they are efficient, flexible, and easy to specify, require fewer pools, and have error-correcting and error-detecting capabilities. In addition, screening can often be achieved in only one pass, thus facilitating automation. For design comparison, we assume a binomial distribution for the number of "positive" clones, with parameters n, the number of clones, and c, the coverage. We propose the expected number of resolved positive clones--clones that are definitely positive based upon the pool assays--as a criterion for the efficiency of a pooling design. We determine the value of k that is optimal, with respect to this criterion, as a function of v, n, and c. We also describe superior k-sets designs called k-sets packing designs. As an illustration, we discuss a robotically implemented design for a 2.5-fold-coverage, human chromosome 16 YAC library of n = 1298 clones. We also estimate the probability that each clone is positive, given the pool-assay data and a model for experimental errors.

摘要

我们描述了基于我们称为“随机 k 集设计”的合并方案来筛选克隆文库的有效方法。在这些设计中,任何克隆出现的池同样可能是从 v 个池中任意选择的 k 个池。可以选择 k 和 v 的值以优化所需特性。随机 k 集设计相对于其他合并方案具有显著优势:它们高效、灵活且易于指定,所需的池更少,并且具有纠错和检错能力。此外,筛选通常只需进行一次,从而便于自动化。为了进行设计比较,我们假设“阳性”克隆的数量服从二项分布,参数为 n(克隆的数量)和 c(覆盖率)。我们提出将已解析的阳性克隆(即根据池检测确定为阳性的克隆)的预期数量作为合并设计效率的标准。我们根据该标准确定相对于 v、n 和 c 的函数的最优 k 值。我们还描述了称为 k 集填充设计的更优 k 集设计。作为一个示例,我们讨论了一种针对包含 n = 1298 个克隆、覆盖率为 2.5 倍的人类 16 号染色体 YAC 文库的机器人实现设计。我们还根据池检测数据和实验误差模型估计每个克隆为阳性的概率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验