Suppr超能文献

副溶血性弧菌极鞭毛的遗传与分子特征

Genetic and molecular characterization of the polar flagellum of Vibrio parahaemolyticus.

作者信息

McCarter L L

机构信息

Immunology Department, Scripps Research Institute, La Jolla, California 92037.

出版信息

J Bacteriol. 1995 Mar;177(6):1595-609. doi: 10.1128/jb.177.6.1595-1609.1995.

Abstract

Vibrio parahaemolyticus possesses two alternate flagellar systems adapted for movement under different circumstances. A single polar flagellum propels the bacterium in liquid (swimming), while multiple lateral flagella move the bacterium over surfaces (swarming). Energy to rotate the polar flagellum is derived from the sodium membrane potential, whereas lateral flagella are powered by the proton motive force. Lateral flagella are arranged peritrichously, and the unsheathed filaments are polymerized from a single flagellin. The polar flagellum is synthesized constitutively, but lateral flagella are produced only under conditions in which the polar flagellum is not functional, e.g., on surfaces. This work initiates characterization of the sheathed, polar flagellum. Four genes encoding flagellins were cloned and found to map in two loci. These genes, as well as three genes encoding proteins resembling HAPs (hook-associated proteins), were sequenced. A potential consensus polar flagellar promoter was identified by using upstream sequences from seven polar genes. It resembled the enterobacterial sigma 28 consensus promoter. Three of the four flagellin genes were expressed in Escherichia coli, and expression was dependent on the product of the fliA gene encoding sigma 28. The fourth flagellin gene may be different regulated. It was not expressed in E. coli, and inspection of upstream sequence revealed a potential sigma 54 consensus promoter. Mutants with single and multiple defects in flagellin genes were constructed in order to determine assembly rules for filament polymerization. HAP mutants displayed new phenotypes, which were different from those of Salmonella typhimurium and most probably were the result of the filament being sheathed.

摘要

副溶血性弧菌拥有两种交替的鞭毛系统,以适应不同环境下的运动。单个极鞭毛推动细菌在液体中运动(游动),而多个侧鞭毛则使细菌在表面移动(群游)。极鞭毛旋转的能量来自钠膜电位,而侧鞭毛则由质子动力提供能量。侧鞭毛周生排列,无鞘的鞭毛丝由单一鞭毛蛋白聚合而成。极鞭毛是组成型合成的,但侧鞭毛仅在极鞭毛无功能的条件下产生,例如在表面。这项工作开始对有鞘的极鞭毛进行表征。克隆了四个编码鞭毛蛋白的基因,发现它们定位于两个位点。对这些基因以及三个编码类似于HAPs(钩相关蛋白)的蛋白质的基因进行了测序。通过使用七个极基因的上游序列鉴定出一个潜在的共有极鞭毛启动子。它类似于肠杆菌的σ28共有启动子。四个鞭毛蛋白基因中的三个在大肠杆菌中表达,并且表达依赖于编码σ28的fliA基因的产物。第四个鞭毛蛋白基因可能受到不同的调控。它在大肠杆菌中不表达,对上游序列的检查揭示了一个潜在的σ54共有启动子。构建了鞭毛蛋白基因有单个和多个缺陷的突变体,以确定鞭毛丝聚合的组装规则。HAP突变体表现出与鼠伤寒沙门氏菌不同的新表型,很可能是鞭毛有鞘的结果。

相似文献

1
Genetic and molecular characterization of the polar flagellum of Vibrio parahaemolyticus.
J Bacteriol. 1995 Mar;177(6):1595-609. doi: 10.1128/jb.177.6.1595-1609.1995.
3
Lateral flagellar gene system of Vibrio parahaemolyticus.
J Bacteriol. 2003 Aug;185(15):4508-18. doi: 10.1128/JB.185.15.4508-4518.2003.
4
Analysis of the polar flagellar gene system of Vibrio parahaemolyticus.
J Bacteriol. 2000 Jul;182(13):3693-704. doi: 10.1128/JB.182.13.3693-3704.2000.
6
Dual flagellar systems enable motility under different circumstances.
J Mol Microbiol Biotechnol. 2004;7(1-2):18-29. doi: 10.1159/000077866.
8
Organization and ordered expression of Caulobacter genes encoding flagellar basal body rod and ring proteins.
J Mol Biol. 1992 Dec 20;228(4):1147-62. doi: 10.1016/0022-2836(92)90322-b.
9
Iron regulation of swarmer cell differentiation of Vibrio parahaemolyticus.
J Bacteriol. 1989 Feb;171(2):731-6. doi: 10.1128/jb.171.2.731-736.1989.

引用本文的文献

1
Superoxide dismutase VPA1514 in Vibrio parahaemolyticus protects against environmental stresses.
PLoS One. 2025 Aug 14;20(8):e0329351. doi: 10.1371/journal.pone.0329351. eCollection 2025.
2
A conserved cell-pole determinant organizes proper polar flagellum formation.
Elife. 2024 Dec 5;13:RP93004. doi: 10.7554/eLife.93004.
3
The Vibrio Polar Flagellum: Structure and Regulation.
Adv Exp Med Biol. 2023;1404:77-97. doi: 10.1007/978-3-031-22997-8_5.
4
Surveying a Swarm: Experimental Techniques To Establish and Examine Bacterial Collective Motion.
Appl Environ Microbiol. 2022 Feb 8;88(3):e0185321. doi: 10.1128/AEM.01853-21. Epub 2021 Dec 8.
5
The Polar Flagellar Transcriptional Regulatory Network in Deviates from Canonical Species.
J Bacteriol. 2021 Sep 23;203(20):e0027621. doi: 10.1128/JB.00276-21. Epub 2021 Aug 2.
7
Flagellar Synthesis.
Front Cell Infect Microbiol. 2019 May 1;9:131. doi: 10.3389/fcimb.2019.00131. eCollection 2019.
8
A Critical Region in the FlaA Flagellin Facilitates Filament Formation of the Vibrio cholerae Flagellum.
J Bacteriol. 2018 Jul 10;200(15). doi: 10.1128/JB.00029-18. Print 2018 Aug 1.
9
Post-Genomic Analysis of Members of the Family Vibrionaceae.
Microbiol Spectr. 2015 Oct;3(5). doi: 10.1128/microbiolspec.VE-0009-2014.
10
Genetic determinants of swimming motility in the squid light-organ symbiont Vibrio fischeri.
Microbiologyopen. 2013 Aug;2(4):576-94. doi: 10.1002/mbo3.96. Epub 2013 Jun 12.

本文引用的文献

3
The Campylobacter sigma 54 flaB flagellin promoter is subject to environmental regulation.
J Bacteriol. 1993 Jul;175(14):4448-55. doi: 10.1128/jb.175.14.4448-4455.1993.
4
Bacterial flagellar filaments and their component flagellins.
Can J Microbiol. 1993 May;39(5):451-72. doi: 10.1139/m93-066.
5
Sensing structural intermediates in bacterial flagellar assembly by export of a negative regulator.
Science. 1993 Nov 19;262(5137):1277-80. doi: 10.1126/science.8235660.
6
Tyrosine phosphate in a- and b-type flagellins of Pseudomonas aeruginosa.
J Bacteriol. 1993 Apr;175(8):2458-61. doi: 10.1128/jb.175.8.2458-2461.1993.
7
Invited review: bacterial flagellar sheaths: structures in search of a function.
Cell Motil. 1983;3(1):93-103. doi: 10.1002/cm.970030108.
8
Excretion of unassembled flagellin by Salmonella typhimurium mutants deficient in hook-associated proteins.
J Bacteriol. 1984 Sep;159(3):1056-9. doi: 10.1128/jb.159.3.1056-1059.1984.
9
New M13 vectors for cloning.
Methods Enzymol. 1983;101:20-78. doi: 10.1016/0076-6879(83)01005-8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验