Spencer C A, LoPresti J S, Nicoloff J T, Dlott R, Schwarzbein D
Department of Medicine, University of Southern California, School of Medicine, Los Angeles 90033.
J Clin Endocrinol Metab. 1995 Mar;80(3):854-9. doi: 10.1210/jcem.80.3.7883842.
The magnitude and temporal pattern of serum TSH suppression after single or multiple doses of thyroid hormone (T3, T4, or triiodothyroacetic acid) were studied using third and fourth generation TSH assays (sensitivities, 0.01 and 0.001 mU/L, respectively). A constant T3 dose (263 micrograms i.v.) administered at a uniform clock time (1200 h) produced identical serum TSH suppression patterns, (percent of control TSH vs. hours) in euthyroid and hypothyroid subjects. The percent log TSH vs. log time plot revealed three temporally distinct linear suppression phases: phase 1, a rapid TSH suppression, onset 1 h and lasting for 10-20 h; phase 2, slower suppression, onset between 10 and 20 h and lasting for 6-8 weeks; and phase 3, an invariable low TSH level (< 0.01 mU/L) with chronic T3 suppression (100 micrograms four times a day). TSH escaped maximal suppression at a similar serum T3 level in both euthyroid and hypothyroid subjects (2.9 +/- 0.2 vs. 3.5 +/- 0.5 nmol/L, respectively; P > 0.9), despite different basal serum T3 values (2.0 +/- 0.1 vs. 0.6 +/- 0.1 nmol/L, respectively; P < 0.01). Two milligrams of triiodothyroacetic acid or 2 mg T4 given iv at 1200 h produced TSH suppression patterns similar to T3. The phase 1 suppression varied with the clock time of T3 administration, (steeper responses were seen at 2400 vs. 1200 h), whereas phase 2 responses were unaltered. This study shows that thyroid hormone suppression of TSH is a complex, biphasic, nonlinear process, which is reproducible and independent of thyroid status or the thyroid hormone analog used. It is hypothesized that phase 1 reflects inhibition of release of preformed hormone, whereas phase 2 likely reflects inhibition of de novo synthesis and/or thyrotroph storage of TSH. In contrast, phase 3 secretion seems to represent basal constitutive TSH release, which may have relevance to the role of thyroid hormone-suppressive therapy in the treatment of patients with benign or neoplastic thyroid disease.
使用第三代和第四代促甲状腺激素(TSH)检测方法(灵敏度分别为0.01和0.001 mU/L),研究了单次或多次给予甲状腺激素(T3、T4或三碘甲状腺乙酸)后血清TSH抑制的幅度和时间模式。在统一的时钟时间(12:00)静脉注射恒定剂量的T3(263微克),在甲状腺功能正常和甲状腺功能减退的受试者中产生了相同的血清TSH抑制模式(对照TSH百分比与时间的关系)。log TSH百分比与log时间的关系图显示出三个在时间上不同的线性抑制阶段:阶段1,TSH快速抑制,开始于1小时,持续10 - 20小时;阶段2,抑制较慢,开始于10至20小时,持续6 - 8周;阶段3,在慢性T3抑制(每天四次,每次100微克)下TSH水平恒定较低(<0.01 mU/L)。在甲状腺功能正常和甲状腺功能减退的受试者中,TSH在相似的血清T3水平时逃脱最大抑制(分别为2.9±0.2与3.5±0.5 nmol/L;P>0.9),尽管基础血清T3值不同(分别为2.0±0.1与0.6±0.1 nmol/L;P<0.01)。在12:00静脉注射2毫克三碘甲状腺乙酸或2毫克T4产生的TSH抑制模式与T3相似。阶段1的抑制随T3给药的时钟时间而变化(在24:00给药时的反应比12:00给药时更陡峭),而阶段2的反应未改变。本研究表明,甲状腺激素对TSH的抑制是一个复杂的、双相的、非线性过程,该过程具有可重复性,且与甲状腺状态或所使用的甲状腺激素类似物无关。据推测,阶段1反映了对预先形成的激素释放的抑制,而阶段2可能反映了对TSH从头合成和/或促甲状腺细胞储存的抑制。相比之下,阶段3的分泌似乎代表基础组成性TSH释放,这可能与甲状腺激素抑制疗法在良性或肿瘤性甲状腺疾病患者治疗中的作用有关。