Dehal S S, Kupfer D
Worcester Foundation for Experimental Biology, Shrewsbury, MA 01545.
Drug Metab Dispos. 1994 Nov-Dec;22(6):937-46.
Previous studies demonstrated that methoxychlor [1,1,1-trichloro-2,2-bis-(4-methoxyphenyl)ethane] is a proestrogen and is toxic to mammalian reproductive processes. Mammalian liver microsomes sequentially demethylate methoxychlor (I), yielding two estrogenic metabolites, mono-OH-M (II) and bis-OH-M (III). Liver microsomes from phenobarbital (PB)-treated rats (PB microsomes) additionally formed a catechol product, tris-OH-M (VII) (Kupfer et al., Chem. Res. Toxicol. 3, 8-16, 1990). This study shows that, in addition to compounds II, III and VII, male and female rat PB microsomes catalyze the formation of a novel ring-hydroxylated methoxychlor metabolite, ring-OH-M (IV). Liver microsomes from male rats treated with pregnenolone-16 alpha-carbonitrile formed the same metabolites as PB microsomes, but the ring-OH-M was formed only in minute amounts, and there was no tris-OH-M. Liver microsomes from methylchlolanthrene-treated and control male rats demethylated methoxychlor, but did not form ring-hydroxylated products. Similarly, human liver microsomes exhibited demethylation but not ring-hydroxylation. Incubation of mono-OH-M (II) with control rat liver microsomes yielded only bis-OH-M (III), whereas incubation of ring-OH-M (IV) resulted in monodemethylated (dihydroxy) compounds V/VI and didemethylated ring-hydroxylated compound, tris-OH-M (VII). Incubation of (IV) with PB microsomes led to compounds V and/or VI and tris-OH-M (VII), whereas incubation of mono-OH-M (II) yielded bis-OH-M (III) and tris-OH-M (VII). The evidence indicates that ring-hydroxylation is catalyzed by CYP2B: a) induction of CYP2B was required for ring-hydroxylation; b) antibodies against CYP2B1/2 strongly inhibited the formation of the ring-hydroxylated products by PB microsomes; c) incubation of methoxychlor with reconstituted CYP2B1 yielded both the hydroxylated (IV and VII) and the demethylated (II and III) metabolites; and d) reconstituted CYP2B1 converted mono-OH-M into bis-OH-M and tris-OH-M, whereas bis-OH-M was converted into tris-OH-M. Human CYP2B6 exhibits ring-hydroxylation, indicating that this reaction is catalyzed by several CYP2B isozymes. In addition, this study demonstrates that the formation of the catechol tris-OH-M involves two metabolic pathways: via O-demethylation followed by ring-hydroxylation and via ring-hydroxylation and subsequent O-demethylation.
先前的研究表明,甲氧滴滴涕[1,1,1-三氯-2,2-双(4-甲氧基苯基)乙烷]是一种前雌激素,对哺乳动物的生殖过程有毒性。哺乳动物肝脏微粒体会依次将甲氧滴滴涕(I)去甲基化,产生两种雌激素代谢物,单羟基-M(II)和双羟基-M(III)。经苯巴比妥(PB)处理的大鼠的肝脏微粒体(PB微粒体)还会形成一种儿茶酚产物,三羟基-M(VII)(库普弗等人,《化学研究毒理学》3,8 - 16,1990)。本研究表明,除了化合物II、III和VII外,雄性和雌性大鼠的PB微粒体还催化形成一种新型的环羟基化甲氧滴滴涕代谢物,环羟基-M(IV)。用孕烯醇酮-16α-腈处理的雄性大鼠的肝脏微粒体形成的代谢物与PB微粒体相同,但环羟基-M仅微量形成,且没有三羟基-M。经甲基胆蒽处理的雄性大鼠和对照雄性大鼠的肝脏微粒体使甲氧滴滴涕去甲基化,但未形成环羟基化产物。同样,人肝脏微粒体表现出去甲基化但没有环羟基化。将单羟基-M(II)与对照大鼠肝脏微粒体一起孵育仅产生双羟基-M(III),而将环羟基-M(IV)孵育则产生单去甲基化(二羟基)化合物V/VI和双去甲基化的环羟基化化合物,三羟基-M(VII)。将(IV)与PB微粒体一起孵育会产生化合物V和/或VI以及三羟基-M(VII),而将单羟基-M(II)孵育则产生双羟基-M(III)和三羟基-M(VII)。证据表明环羟基化是由CYP2B催化的:a)环羟基化需要诱导CYP2B;b)针对CYP2B1/2的抗体强烈抑制PB微粒体形成环羟基化产物;c)将甲氧滴滴涕与重组CYP2B1一起孵育会产生羟基化(IV和VII)和去甲基化(II和III)代谢物;d)重组CYP2B1将单羟基-M转化为双羟基-M和三羟基-M,而双羟基-M则转化为三羟基-M。人CYP2B6表现出环羟基化,表明该反应由几种CYP2B同工酶催化。此外,本研究表明儿茶酚三羟基-M的形成涉及两条代谢途径:通过O-去甲基化然后环羟基化以及通过环羟基化和随后的O-去甲基化。