Suppr超能文献

粗糙脉孢菌分生孢子形成过程中与高氧化态相关的酶失活

Enzyme inactivation related to a hyperoxidant state during conidiation of Neurospora crassa.

作者信息

Toledo I, Aguirre J, Hansberg W

机构信息

Centro de Investigación sobre Fijación de Nitrógeno, Universidad Nacional Autónoma de México, Cuernavaca, Mor.

出版信息

Microbiology (Reading). 1994 Sep;140 ( Pt 9):2391-7. doi: 10.1099/13500872-140-9-2391.

Abstract

The conidiation process of Neurospora crassa is characterized by three morphogenetic steps: hyphal adhesion, aerial hyphal formation, and production of conidia. Previous data indicated the occurrence of a hyperoxidant state at the onset of all three morphogenetic steps. Because glutamine synthetase (GS) and the biosynthetic glutamate dehydrogenase [GDH(NADP)] enzymes are susceptible to inactivation by reactive oxygen species, we followed these enzyme activities during conidiation and under different physiological conditions and related them to the hyperoxidant states and morphogenesis. Loss of GS activity occurred prior to all three morphogenetic steps, coinciding with an increase in total protein oxidation. Oxidized GS polypeptides were detected during hyphal adhesion. Loss of GDH(NADP) activity also occurred during hyphal adhesion and before aerial hyphal formation; the enzyme polypeptide and activity decreased in the adhered hyphae to low values and no GDH(NADP) was detected in aerial hyphae. The catabolic GDH [GDH(NAD)] behaved in an opposite manner, increasing its activity during hyphal adhesion and aerial hyphae development. These results are discussed with regard to cell differentiation and the conidiation process in N. crassa.

摘要

粗糙脉孢菌的产孢过程具有三个形态发生步骤

菌丝粘附、气生菌丝形成和分生孢子产生。先前的数据表明,在所有三个形态发生步骤开始时都会出现高氧化态。由于谷氨酰胺合成酶(GS)和生物合成型谷氨酸脱氢酶[GDH(NADP)]易受活性氧的失活作用影响,因此我们在产孢过程中以及不同生理条件下跟踪了这些酶的活性,并将它们与高氧化态和形态发生联系起来。GS活性在所有三个形态发生步骤之前就已丧失,这与总蛋白氧化的增加相吻合。在菌丝粘附期间检测到了氧化的GS多肽。GDH(NADP)活性在菌丝粘附期间和气生菌丝形成之前也发生了丧失;该酶多肽和活性在粘附的菌丝中降低至低值,并且在气生菌丝中未检测到GDH(NADP)。分解代谢型GDH[GDH(NAD)]的表现则相反,在菌丝粘附和气生菌丝发育期间其活性增加。本文就粗糙脉孢菌中的细胞分化和产孢过程对这些结果进行了讨论。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验