Kawahara H, Blackshaw L A, Nisyrios V, Dent J
Gastroenterology Unit, Royal Adelaide Hospital, Australia.
J Auton Nerv Syst. 1994 Sep;49(1):69-80. doi: 10.1016/0165-1838(94)90022-1.
The extrinsic neural pathways and transmitter mechanisms involved in neural influences controlling lower oesophageal sphincter (LOS) pressure have been evaluated in three groups of experiments in urethane anaesthetized rats. A miniature perfused sleeve/sidehole catheter measured gastric, LOS and oesophageal pressures. Group 1: Vago-vagal and vago-spinal reflex pathways were activated simultaneously via the central nervous system by stimulation of the central cut end of the left vagus. This caused a prolonged drop in LOS pressure with a rapid onset and a slow return to baseline. Subsequent right (bilateral) vagotomy in these animals increased basal LOSP (P < 0.001). Central vagal stimulation-induced reduction of LOSP was not significantly changed in amplitude but was shorter in duration (P < 0.01) than before bilateral vagotomy. IV administration of the 5-HT3 receptor antagonist granisetron (50 micrograms/kg), after bilateral vagotomy had no effect on the response to central vagal stimulation. The nitric oxide (NO) synthase inhibitor L-nitroarginine methyl ester (L-NAME) (100 mg/kg) reduced the depth of relaxation (P < 0.01) and temporarily increased basal LOSP. Propranolol (1.5 mg/kg, i.v.) subsequently increased basal LOSP (P < 0.01), but had no further effect on the vagal stimulation-induced reduction in LOSP. Alpha adrenergic blockade with phentolamine (1 mg/kg, i.v.) decreased basal LOSP (P < 0.01), and nearly abolished the response to vagal stimulation (P < 0.01). Group 2: Both alpha 1- and alpha 2-adrenoceptors were shown to be involved by the combined use of the more selective antagonists yohimbine (1 mg/kg, i.v.) and prazosin (200 micrograms/kg) in place of phentolamine. Group 3: To observe neurotransmitter mechanisms in the vago-vagal pathway, central left vagal stimulation was performed after left vagotomy, and subsequently after blockade of sympathetic motor pathways with guanethidine (5 mg/kg), leaving intact efferent pathways in the right vagus. Guanethidine increased basal LOSP (P < 0.01), and reduced the duration of vagal-induced LOS relaxation (P < 0.05). Depth of relaxation was unchanged. Subsequently, granisetron and L-NAME had no significant effects. Finally, additional right vagotomy abolished the remaining response. Our data indicate the existence of vago-spinal and vago-vagal inhibitory reflex pathways to the rat LOS. The inhibitory vago-spinal pathway is mainly alpha-adrenergic, and has a minor NO-mediated component, but no 5-HT3 receptor-mediated mechanism. In the vago-vagal pathway, no significant involvement of NO-mediated or 5-HT3 receptor-mediated effects was observed. Other non-adrenergic inhibitory mechanisms were, however, apparent.(ABSTRACT TRUNCATED AT 400 WORDS)
在三组对氨基甲酸乙酯麻醉大鼠进行的实验中,对控制食管下括约肌(LOS)压力的神经影响所涉及的外在神经通路和递质机制进行了评估。一个微型灌注袖套/侧孔导管测量胃、LOS和食管压力。第1组:通过刺激左侧迷走神经的中枢切断端,经中枢神经系统同时激活迷走-迷走和迷走-脊髓反射通路。这导致LOS压力长时间下降,起效迅速,恢复到基线缓慢。随后对这些动物进行右侧(双侧)迷走神经切断术,增加了基础LOSP(P<0.001)。双侧迷走神经切断术前,中枢迷走神经刺激引起的LOSP降低幅度无显著变化,但持续时间缩短(P<0.01)。双侧迷走神经切断术后,静脉注射5-HT3受体拮抗剂格拉司琼(50微克/千克)对中枢迷走神经刺激的反应无影响。一氧化氮(NO)合酶抑制剂L-硝基精氨酸甲酯(L-NAME)(100毫克/千克)降低了松弛深度(P<0.01),并暂时增加了基础LOSP。普萘洛尔(1.5毫克/千克,静脉注射)随后增加了基础LOSP(P<0.01),但对迷走神经刺激引起的LOSP降低没有进一步影响。用酚妥拉明(1毫克/千克,静脉注射)进行α肾上腺素能阻断降低了基础LOSP(P<0.01),并几乎消除了对迷走神经刺激的反应(P<0.01)。第2组:通过联合使用更具选择性的拮抗剂育亨宾(1毫克/千克)和哌唑嗪(200微克/千克)代替酚妥拉明,表明α1和α2肾上腺素能受体均参与其中。第3组:为了观察迷走-迷走通路中的递质机制,在左侧迷走神经切断术后进行中枢左侧迷走神经刺激,随后在用胍乙啶(5毫克/千克)阻断交感运动通路后进行刺激,右侧迷走神经的传出通路保持完整。胍乙啶增加了基础LOSP(P<0.01),并缩短了迷走神经诱导的LOS松弛持续时间(P<0.05)。松弛深度未改变。随后,格拉司琼和L-NAME没有显著影响。最后,额外的右侧迷走神经切断术消除了剩余的反应。我们的数据表明存在对大鼠LOS的迷走-脊髓和迷走-迷走抑制反射通路。抑制性迷走-脊髓通路主要是α肾上腺素能的,有一个次要的NO介导成分,但没有5-HT3受体介导机制。在迷走-迷走通路中,未观察到NO介导或5-HT3受体介导效应的显著参与。然而,其他非肾上腺素能抑制机制是明显的。(摘要截短于400字)