Lafata J E, Koch G G, Weissert W G
Center for Health System Studies, Henry Ford Health System, Detroit, MI 48202-3450.
Am J Public Health. 1994 Nov;84(11):1813-7. doi: 10.2105/ajph.84.11.1813.
Although reliable direct state and local estimates of the activity-limited population are frequently unavailable, regression-adjusted synthetic estimates can be made. Such estimates use multivariate methods to model activity limitation at the national level and then apply model-predicted probabilities to corresponding community-specific demographic data.
Using the 1989 National Health Interview Survey and the 1991 Area Resource File System, this study produced log-linear regression models that included person-level demographic and county-level contextual variables as predictors of activity limitation. Model-predicted rates were then multiplied by corresponding intercensal population data to generate state and local synthetic estimates of activity limitation.
Rates of activity limitation generally were found to increase with age and as the socioeconomic conditions of the county in which an individual resided worsened. Race and sex also tended to be statistically significant predictors of activity limitation.
Activity limitation can be effectively modeled by age, sex, race, and community socioeconomic status. Synthetic estimates such as these are relatively simple to generate and can be useful for small-area planning in the absence of direct local estimates.
尽管可靠的州和地方层面关于活动受限人群的直接估计值常常难以获得,但可以进行回归调整后的综合估计。此类估计采用多变量方法在国家层面建立活动受限模型,然后将模型预测概率应用于相应的社区特定人口统计数据。
利用1989年国家健康访谈调查和1991年区域资源文件系统,本研究生成了对数线性回归模型,该模型将个人层面的人口统计变量和县级背景变量作为活动受限的预测因素。然后将模型预测率乘以相应的两次人口普查之间的人口数据,以生成州和地方层面活动受限的综合估计值。
一般发现活动受限率随年龄增长以及个人居住县的社会经济状况恶化而上升。种族和性别也往往是活动受限的统计学显著预测因素。
活动受限可以通过年龄、性别、种族和社区社会经济地位有效建模。这样的综合估计相对容易生成,并且在缺乏直接的地方估计时可用于小区域规划。