Suppr超能文献

生物矿化:晶体科学的新方向。

Biomineralization: new directions in crystal science.

作者信息

Heywood B R

机构信息

Department of Chemistry, University of Salford, England.

出版信息

Microsc Res Tech. 1994 Apr 1;27(5):376-88. doi: 10.1002/jemt.1070270504.

Abstract

Effective protocols for controlling crystal structure, size, and morphology attract considerable interest given the requirement for particles of modal size and shape in many areas of materials fabrication and the importance of crystallochemical selectivity in determining the exploitable properties of inorganic solids. For this reason biomineralization merits particular attention since many biominerals are deposited in a highly controlled manner to produce crystals which are uniformly sized and crystallographically unique. Studies of biominerals have revealed that while a complex array of strategies have evolved for regulating their formation, one feature is common to the biological paradigm; interactions between organized biopolymeric assemblies and the nascent inorganic solids play a pivotal role in controlling the crystallization process. In order to gain a better understanding of the molecular interactions which take place at organic-inorganic interface and address the fundamental chemical problems of biomineralization, a crystal chemical approach has been adopted. Organized organic assemblies (phospholipid vesicles, Langmuir monolayers, polypetide templates) of precise molecular design (head group identity, packing conformation, peptide sequence, etc.) were assayed for their effectiveness in controlling the nucleation and growth of inorganic solids. This work has established that through systematic changes in the nature of the organic matrix the size, crystallographic orientation, and growth of the mineral phase can be controlled. Critical to this process was the translation of specific molecular information at the organic-inorganic interface: epitaxial alignment, stereochemical complementarity, and electrostatic interactions were an essential feature of this recognition event.

摘要

鉴于材料制造的许多领域对具有特定尺寸和形状的颗粒有需求,以及晶体化学选择性在决定无机固体可利用性质方面的重要性,控制晶体结构、尺寸和形态的有效方案引起了广泛关注。因此,生物矿化值得特别关注,因为许多生物矿物是以高度可控的方式沉积形成尺寸均匀且晶体结构独特的晶体。对生物矿物的研究表明,虽然已经演化出一系列复杂的策略来调节它们的形成,但生物模式有一个共同特征;有组织的生物聚合物组装体与新生无机固体之间的相互作用在控制结晶过程中起关键作用。为了更好地理解在有机 - 无机界面发生的分子相互作用,并解决生物矿化的基本化学问题,采用了晶体化学方法。对具有精确分子设计(头部基团特性、堆积构象、肽序列等)的有组织有机组装体(磷脂囊泡、朗缪尔单层膜、多肽模板)控制无机固体成核和生长的有效性进行了测定。这项工作已经确定,通过有机基质性质的系统变化,可以控制矿物相的尺寸、晶体取向和生长。这一过程的关键在于有机 - 无机界面特定分子信息的传递:外延排列、立体化学互补性和静电相互作用是这一识别过程的基本特征。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验