Suppr超能文献

野外果蝇耐热性的遗传变异和母体变异。

Genetic and maternal variation for heat resistance in Drosophila from the field.

作者信息

Jenkins N L, Hoffmann A A

机构信息

Department of Genetics and Human Variation, La Trobe University, Bundoora, Victoria, Australia.

出版信息

Genetics. 1994 Jul;137(3):783-9. doi: 10.1093/genetics/137.3.783.

Abstract

In Drosophila, field heritability estimates have focused on morphological traits and ignored maternal effects. This study considers heritable variation and maternal effects in a physiological trait, heat resistance. Drosophila were collected from the field in Melbourne, Australia. Resistance was determined using knock-down time at 37 degrees. Drosophila melanogaster was more resistant than Drosophila simulans, and males tended to be more resistant than females. Field heritability and maternal effects were examined in D. simulans using the regression of laboratory-reared F1 and F2 onto field-collected parents. Males from the field were crossed to a laboratory stock to obtain progeny. The additive genetic component to variation in heat resistance was large and significant, and heritability was estimated to be around 0.5. A large maternal effect was also evident. Comparisons of regression coefficients suggested that the maternal effect was not associated with cytoplasmic factors. There was no correlation between body size (as measured by wing length) and heat resistance. Unlike in the case of morphological traits, the heritability for heat resistance in nature is not less than that measured in the laboratory.

摘要

在果蝇中,田间遗传力估计主要集中在形态特征上,而忽略了母体效应。本研究考虑了生理性状耐热性中的遗传变异和母体效应。果蝇是从澳大利亚墨尔本的野外采集的。通过在37摄氏度下的击倒时间来确定抗性。黑腹果蝇比拟果蝇更具抗性,且雄性往往比雌性更具抗性。利用实验室饲养的F1和F2对野外采集的亲本进行回归分析,研究了拟果蝇的田间遗传力和母体效应。将野外雄性果蝇与实验室品系杂交以获得后代。耐热性变异的加性遗传成分很大且显著,遗传力估计约为0.5。明显也存在较大的母体效应。回归系数的比较表明,母体效应与细胞质因子无关。体型(以翅长衡量)与耐热性之间没有相关性。与形态特征的情况不同,自然环境中耐热性的遗传力不低于实验室测量的遗传力。

相似文献

1
Genetic and maternal variation for heat resistance in Drosophila from the field.
Genetics. 1994 Jul;137(3):783-9. doi: 10.1093/genetics/137.3.783.
2
Humidity affects genetic architecture of heat resistance in Drosophila melanogaster.
J Evol Biol. 2012 Jun;25(6):1180-8. doi: 10.1111/j.1420-9101.2012.02506.x. Epub 2012 Apr 5.
5
Investigating latitudinal clines for life history and stress resistance traits in Drosophila simulans from eastern Australia.
J Evol Biol. 2008 Nov;21(6):1470-9. doi: 10.1111/j.1420-9101.2008.01617.x. Epub 2008 Sep 22.
6
ESTIMATING THE HERITABILITY OF FLUCTUATING ASYMMETRY IN FIELD DROSOPHILA.
Evolution. 1998 Jun;52(3):816-824. doi: 10.1111/j.1558-5646.1998.tb03705.x.
7
Heritability and selection on body size in a natural population of Drosophila buzzatii.
Genetics. 1995 Sep;141(1):181-9. doi: 10.1093/genetics/141.1.181.
9
Resistance to environmental stress in Drosophila ananassae: latitudinal variation and adaptation among populations.
J Evol Biol. 2010 Sep 1;23(9):1979-88. doi: 10.1111/j.1420-9101.2010.02061.x. Epub 2010 Jul 31.
10
Wing-size heritability in a natural population of Drosophila subobscura.
Heredity (Edinb). 1999 Jan;82 ( Pt 1):100-6. doi: 10.1038/sj.hdy.6884390.

引用本文的文献

1
Geographic variation in thermal tolerance of western corn rootworm.
Sci Rep. 2025 Jul 18;15(1):26027. doi: 10.1038/s41598-025-08768-8.
3
How will mosquitoes adapt to climate warming?
Elife. 2021 Aug 17;10:e69630. doi: 10.7554/eLife.69630.
5
Genomic Patterns of Geographic Differentiation in Drosophila simulans.
Genetics. 2016 Mar;202(3):1229-40. doi: 10.1534/genetics.115.185496. Epub 2016 Jan 22.
6
Keeping pace with climate change: what is wrong with the evolutionary potential of upper thermal limits?
Ecol Evol. 2012 Nov;2(11):2866-80. doi: 10.1002/ece3.385. Epub 2012 Oct 13.
7
Upper thermal limits of Drosophila are linked to species distributions and strongly constrained phylogenetically.
Proc Natl Acad Sci U S A. 2012 Oct 2;109(40):16228-33. doi: 10.1073/pnas.1207553109. Epub 2012 Sep 17.
8
Genetic variation in heat-stress tolerance among South American Drosophila populations.
Genetica. 2011 Oct;139(10):1331-7. doi: 10.1007/s10709-012-9635-z. Epub 2012 Feb 15.
10
Acclimation and selection for increased resistance to thermal stress in Drosophila buzzatii.
Genetics. 1996 Feb;142(2):471-9. doi: 10.1093/genetics/142.2.471.

本文引用的文献

1
Non-Mendelian Inheritance of "Heat-Sensitivity" in DROSOPHILA MELANOGASTER.
Genetics. 1983 Jan;103(1):93-107. doi: 10.1093/genetics/103.1.93.
4
Genetics of resistance to environmental stresses in Drosophila populations.
Annu Rev Genet. 1973;7:239-65. doi: 10.1146/annurev.ge.07.120173.001323.
7
Genetic correlations and maternal effect coefficients obtained from offspring-parent regression.
Genetics. 1989 Aug;122(4):915-22. doi: 10.1093/genetics/122.4.915.
8
Ecological aspects of the heritability of body size in Drosophila buzzatii.
Genetics. 1989 Dec;123(4):803-13. doi: 10.1093/genetics/123.4.803.
9
Laboratory estimates of heritabilities and genetic correlations in nature.
Genetics. 1989 Dec;123(4):865-71. doi: 10.1093/genetics/123.4.865.
10
Genetic variance for body size in a natural population of Drosophila buzzatii.
Genetics. 1991 Aug;128(4):739-50. doi: 10.1093/genetics/128.4.739.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验