Eliasof S, Werblin F
University of California, Berkeley 94720.
J Neurosci. 1993 Jan;13(1):402-11. doi: 10.1523/JNEUROSCI.13-01-00402.1993.
L-Glutamate elicits an inwardly rectifying current at hyperpolarized potentials in isolated retinal cones of the tiger salamander, as measured under whole-cell patch clamp. Evidence presented in this article supports the notion that cones possess a high-affinity glutamate transporter. This glutamate-elicited current shows no desensitization over a period of several minutes, and has an affinity (Km) of 10 microM. The inward current is mimicked by the amino acids L-aspartate, D-aspartate, L-cysteate, and to a lesser extent D-glutamate. It is neither blocked by the glutamate receptor antagonists kynurenic acid (1 mM), 6-cyano-7-nitroquinoxaline-2,3-dione (100 microM), or 2-amino-5-phosphonovalerate (100 microM), nor elicited by the glutamate receptor agonists (100 microM each) kainate, quisqualate, NMDA, or 2-amino-4-phosphonobutyrate. The glutamate-elicited current was reduced by the glutamate transport blockers dihydrokainate (DHKA), DL-threo-beta-hydroxyaspartate (beta HA), and L-trans-pyrrolidine-2,4-dicarboxylic acid. When glutamate was present on both sides of the membrane, the blockers reduced both uptake and release; the blocker-sensitive current as a function of membrane potential represents the transport current-voltage relation (I-V), and the reversal potential of the I-V represents the transporter equilibrium potential. This potential was a function of the equilibrium potential for glutamate. DHKA and beta HA depolarized horizontal cells in a retinal slice, and abolished their light responses, suggesting that in the absence of glutamate transport, glutamate concentrations in the cleft rise to a level that saturates the postsynaptic receptors. The high capacity of the cone glutamate transporter is well suited for the rapid removal of glutamate from the synaptic cleft required for the signaling of a light onset to postsynaptic cells.
在全细胞膜片钳记录条件下,L-谷氨酸在虎蝾螈分离的视网膜视锥细胞超极化电位时引发内向整流电流。本文提供的证据支持视锥细胞具有高亲和力谷氨酸转运体这一观点。这种由谷氨酸引发的电流在几分钟内无脱敏现象,其亲和力(Km)为10微摩尔。内向电流可被氨基酸L-天冬氨酸、D-天冬氨酸、L-半胱氨酸盐模拟,D-谷氨酸在较小程度上也可模拟。它既不被谷氨酸受体拮抗剂犬尿喹啉酸(1毫摩尔)、6-氰基-7-硝基喹喔啉-2,3-二酮(100微摩尔)或2-氨基-5-磷酸戊酸(100微摩尔)阻断,也不被谷氨酸受体激动剂(各100微摩尔)海人藻酸、quisqualate、N-甲基-D-天冬氨酸或2-氨基-4-磷酸丁酸引发。由谷氨酸引发的电流被谷氨酸转运体阻滞剂二氢海人藻酸(DHKA)、DL-苏式-β-羟基天冬氨酸(βHA)和L-反式-吡咯烷-2,4-二羧酸降低。当膜两侧均存在谷氨酸时,阻滞剂会降低摄取和释放;阻滞剂敏感电流作为膜电位的函数代表转运电流-电压关系(I-V),I-V的反转电位代表转运体平衡电位。该电位是谷氨酸平衡电位的函数。DHKA和βHA使视网膜切片中的水平细胞去极化,并消除其光反应,这表明在缺乏谷氨酸转运时,突触间隙中的谷氨酸浓度会升高至使突触后受体饱和的水平。视锥细胞谷氨酸转运体的高容量非常适合从突触间隙快速清除谷氨酸,这是向突触后细胞发出光起始信号所必需的。