Tuffery P, Etchebest C, Popot J L, Lavery R
CNRS URA 77, Institut de Biologie Physico-Chimique, Paris, France.
J Mol Biol. 1994 Mar 4;236(4):1105-22. doi: 10.1016/0022-2836(94)90015-9.
We have applied a search strategy for determining the optimal packing of protein secondary structure elements to the rotational positioning of the seven transmembrane helices of bacteriorhodopsin. The search is based on the assumption that the relative orientations of the helices within the bundle are conditioned principally by inter-helix side-chain interactions and that the extra-helical parts of the protein have only a minor influence on the bundle conformation. Our approach performs conformational energy optimization using a predetermined set of side-chain rotamers and appropriate methods for sampling the conformational space of peptide fragments with fixed backbone geometries. The final solution obtained for bacteriorhodopsin places each of the seven helices to a precision of a few degrees in rotation around the helical axis and to a few tenths of an ångström in translation along the helical axis with respect to the best experimental structure obtained by electron diffraction, except for helix D, where our results support the suggestion that this helix should be displaced along its axis toward its N terminus. The perspectives of such an approach for the determination of the structures of other transmembrane helical bundles are discussed.
我们已将一种用于确定蛋白质二级结构元件最佳堆积的搜索策略应用于细菌视紫红质七个跨膜螺旋的旋转定位。该搜索基于这样的假设:束内螺旋的相对取向主要由螺旋间侧链相互作用决定,并且蛋白质的螺旋外部分对束构象仅有微小影响。我们的方法使用预先确定的一组侧链旋转异构体以及用于对具有固定主链几何形状的肽片段构象空间进行采样的适当方法来进行构象能量优化。除了螺旋D之外,针对细菌视紫红质获得的最终解决方案将七个螺旋中的每一个围绕螺旋轴的旋转精度定位到几度,并且沿着螺旋轴的平移精度定位到几十分之一埃,相对于通过电子衍射获得的最佳实验结构而言;对于螺旋D,我们的结果支持这样的建议,即该螺旋应沿其轴朝着其N端位移。本文还讨论了这种方法对于确定其他跨膜螺旋束结构的前景。