Suppr超能文献

葡萄糖对酵母质膜H(+) -ATP酶的调控分子机制。结构域间的相互作用及新调控位点的鉴定。

Molecular mechanism of regulation of yeast plasma membrane H(+)-ATPase by glucose. Interaction between domains and identification of new regulatory sites.

作者信息

Eraso P, Portillo F

机构信息

Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid, Spain.

出版信息

J Biol Chem. 1994 Apr 8;269(14):10393-9.

PMID:8144622
Abstract

The carboxyl terminus of yeast plasma membrane H(+)-ATPase is an autoinhibitory domain, and its effect is counteracted by modification of the enzyme triggered by glucose metabolism (Portillo, F., Larrinoa, I. F., and Serrano, R. (1989) FEBS Lett. 247, 381-385). To identify interacting domains involved in this regulation, we have performed intragenic suppressor analysis. A double mutation at the carboxyl terminus (S911A/T912A) results in no activation of the ATPase by glucose and lack of yeast growth on this sugar (Portillo, F., Eraso, P., and Serrano, R. (1991) FEBS Lett. 287, 71-74). Random in vitro mutagenesis of this mutant ATPase gene resulted in 29 revertants. Six corresponded to full revertants of the initial double mutation. Fourteen suppressor (second-site) mutations are located within three functional domains of the enzyme. Four mutations (A165V, V169I/D170N, A350T, and A351T) are localized at the cytoplasmic ends of predicted transmembrane helices 2 and 4; six mutations (P536L, A565T, G587N, G648S, P669L, and G670S) map within the proposed ATP binding domain, and the other four substitutions (P890opa, S896F, R898K, and M907I) are located at the carboxyl terminus. These results demonstrate the interaction, direct or indirect, between these three domains far apart in the linear sequence of the ATPase. All the second-site mutations caused constitutive activation of the ATPase in the absence of glucose metabolism. Second-site mutations at the carboxyl terminus were close to Ser-899 and suggested phosphorylation of this amino acid during glucose activation. Accordingly, the introduction of a negative charge, in a S899D mutant constructed by site-directed mutagenesis, partially mimics the glucose effect on the ATPase.

摘要

酵母质膜H(+)-ATP酶的羧基末端是一个自抑制结构域,其作用可被葡萄糖代谢引发的酶修饰所抵消(波蒂略,F.,拉里尼奥亚,I.F.,和塞拉诺,R.(1989年)《欧洲生物化学学会联合会快报》247,381 - 385)。为了鉴定参与这种调节的相互作用结构域,我们进行了基因内抑制分析。羧基末端的双突变(S911A/T912A)导致葡萄糖不能激活ATP酶,且酵母在这种糖上无法生长(波蒂略,F.,埃拉索,P.,和塞拉诺,R.(1991年)《欧洲生物化学学会联合会快报》287,71 - 74)。对这个突变的ATP酶基因进行随机体外诱变产生了29个回复突变体。其中6个对应于初始双突变的完全回复突变体。14个抑制(第二位点)突变位于该酶的三个功能结构域内。4个突变(A165V、V169I/D170N、A350T和A351T)位于预测的跨膜螺旋2和4的胞质末端;6个突变(P536L、A565T、G587N、G648S、P669L和G670S)定位在拟议的ATP结合结构域内,另外4个替代突变(P890opa、S896F、R898K和M907I)位于羧基末端。这些结果证明了在ATP酶线性序列中相距甚远的这三个结构域之间存在直接或间接的相互作用。所有第二位点突变在无葡萄糖代谢时导致ATP酶的组成型激活。羧基末端的第二位点突变靠近Ser - 899,并提示在葡萄糖激活过程中该氨基酸发生磷酸化。因此,通过定点诱变构建的S899D突变体中引入负电荷,部分模拟了葡萄糖对ATP酶的作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验