Stappen R, Krämer R
Institut für Biotechnologie 1, Forschungszentrum Jülich, Germany.
J Biol Chem. 1994 Apr 15;269(15):11240-6.
In an optimized reconstituted system, the basic kinetic properties of the phosphate carrier from bovine heart mitochondria, e.g. the influence of membrane potential, pH, and proton gradient, were investigated for the two physiological modes of transport (Pi-/Pi- antiport and electroneutral, unidirectional phosphate transport). On the basis of these data, which closely resemble the function known from mitochondria, the reaction mechanism of the phosphate carrier was determined using bireactant initial velocity studies in both transport modes. Translocation occurred according to a simultaneous (sequential) mechanism, involving a ternary complex in transport catalysis. This mechanism indicates that the phosphate carrier falls into the same functional family as most other mitochondrial carriers. A detailed analysis of the different effects of pH on transport substrates and carrier protein in both possible transport modes, in combination with the identity of the kinetic mechanism in both modes, provides evidence that the unidirectional phosphate transport is catalyzed by Pi-/OH- antiport rather than by Pi-/H+ symport. We furthermore observed noncompetitive inhibition of phosphate transport by other anions. The consequences of this result with respect to a functional model of the carrier protein are discussed.
在一个优化的重构系统中,研究了牛心线粒体磷酸载体的基本动力学特性,例如膜电位、pH值和质子梯度对两种生理运输模式(磷酸根/磷酸根反向转运和电中性单向磷酸运输)的影响。基于这些与线粒体已知功能非常相似的数据,在两种运输模式下使用双反应物初始速度研究确定了磷酸载体的反应机制。转运是根据同时(顺序)机制发生的,在运输催化过程中涉及一个三元复合物。该机制表明,磷酸载体与大多数其他线粒体载体属于同一功能家族。对两种可能的运输模式下pH对运输底物和载体蛋白的不同影响进行详细分析,结合两种模式下动力学机制的一致性,提供了证据表明单向磷酸运输是由磷酸根/氢氧根反向转运催化的,而不是由磷酸根/氢离子同向转运催化的。我们还观察到其他阴离子对磷酸运输的非竞争性抑制作用。讨论了该结果对载体蛋白功能模型的影响。