Suppr超能文献

Activation of apoptosis in early mouse embryos by 2'-deoxyadenosine exposure.

作者信息

Gao X, Blackburn M R, Knudsen T B

机构信息

Department of Anatomy and Developmental Biology, Jefferson Medical College, Philadelphia, Pennsylvania 19107.

出版信息

Teratology. 1994 Jan;49(1):1-12. doi: 10.1002/tera.1420490103.

Abstract

Adenosine deaminase (ADA) catalyzes the irreversible hydrolytic deamination of adenosine and deoxyadenosine to nontoxic derivatives. The importance of this reaction in the female reproductive tract of mice is suggested by pronounced utero-placental expression of ADA, and by embryolethality of the potent ADA-inhibitor deoxycoformycin (dCF) on day 7-8 of gestation. The present study investigated the effects of dCF, adenosine, and deoxyadenosine on the mouse neurula. Morphological cell death was monitored by the acridine orange reaction (AOR), and biochemical cell death by internucleosomal DNA cleavage (IDC). A strong AOR appeared in day 7-8 embryos between 3 and 4.5 hr post-exposure to dCF in utero; there was no apparent effect on day 6 or day 9 embryos. Most embryonic tissues were responsive, although the heart and extraembryonic membranes were resistant. Up to 75% of the embryonic chromatin was degraded in a regular pattern in concert with the AOR. Immediate activation of "whole-body" apoptosis was reproduced in short-term whole embryo culture with 0.1 mM deoxyadenosine in the presence of 0.01 mM dCF. This was not activated by exposure to dCF alone nor to adenosine; however, high concentrations of adenosine completely blocked the response to deoxyadenosine, whereas niacinamide inhibited the AOR without changing IDC. The cytotoxic effect of deoxyadenosine was correlated with an expansion of embryonic dATP pools determined by high-performance liquid chromatography analysis. The results suggest that deoxyadenosine is the embryotoxic metabolite which accumulates in the antimesometrium of pregnant mice treated with dCF. Exposure to this metabolic toxin activates apoptosis in day 7-8 embryos through an adenosine-sensitive, NAD-dependent mechanism.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验