Suppr超能文献

用差分方程法对搏动心脏容积扰动的瞬态响应进行建模。

Modeling the transient response to volume perturbations in the beating heart by the difference equation method.

作者信息

Adler D, Nikolic S D, Sonnenblick E H, Yellin E L

机构信息

Department of Biomedical Engineering, Hadassah University Hospital, Ein Kerem, Jerusalem, Israel.

出版信息

Am J Physiol. 1994 Apr;266(4 Pt 2):H1657-71. doi: 10.1152/ajpheart.1994.266.4.H1657.

Abstract

Discrete theoretical methods, compatible with the discrete features of the beating heart, are used together with experimental study to attain a quantitative understanding of the transient response to a volume perturbation and of sustained mechanical alternans (SMA) in the beating heart. This is done in three stages. In stage A, a first-order difference equation describes the stroke volume (SV) response due to the Frank-Starling mechanism. It is shown that the value of gamma, the slope of the SV-end-diastolic volume curve, determines the type of response obtained because of a perturbation: 1) nonoscillatory decay for gamma < 1,2) oscillatory decay for 1 < gamma < 2, 3) SMA for gamma = 2, and 4) chaotic response for gamma > 2. In stage B, when the effect of each SV change on the successive end-diastolic aortic pressure (P) is considered, SV response to a perturbation is determined by a second-order difference equation. The solution of this equation shows that the response is determined by gamma and by the afterload factor lambda 1 = alpha 1.delta, where alpha 1 = delta Pj + 1/delta SVj and delta = delta SVj + 1/delta Pj + 1. The responses are a nonoscillatory decay for lambda 1 < 1 - gamma (type 1), oscillatory decay for 1 - (gamma/2) > lambda 1 > 1 - gamma (type 2), SMA for lambda 1 = 1 - gamma/2 (type 3), and 2:1 electrical-mechanical response for lambda 1 > 1 - gamma/2 (type 4). In stage C, a single volume perturbation, delta SVj, will directly affect not only Pj + 1 but also the subsequent values of P. Filling volume perturbations performed with a mitral valve occluder in eight anesthetized dogs led only to type 1 and 2 responses. The responses predicted by the model (using the experimental values of gamma and lambda 1) in each of the eight open-chest dogs are compatible with the experimental responses, suggesting that it is unlikely that SMA is initiated and maintained by variations in preload and afterload.

摘要

离散理论方法与跳动心脏的离散特征相兼容,与实验研究一起用于定量理解跳动心脏对容量扰动的瞬态响应以及持续性机械交替(SMA)。这分三个阶段进行。在阶段A,一个一阶差分方程描述了由于Frank-Starling机制引起的每搏输出量(SV)响应。结果表明,SV-舒张末期容积曲线的斜率γ的值决定了由于扰动而获得的响应类型:1)γ<1时为非振荡衰减,2)1<γ<2时为振荡衰减,3)γ = 2时为SMA,4)γ>2时为混沌响应。在阶段B,当考虑每个SV变化对连续舒张末期主动脉压(P)的影响时,SV对扰动的响应由二阶差分方程确定。该方程的解表明,响应由γ和后负荷因子λ1 =α1.δ决定,其中α1 =δPj + 1/δSVj且δ =δSVj + 1/δPj + 1。响应情况为:λ1<1 -γ时为非振荡衰减(类型1),1 -(γ/2)>λ1>1 -γ时为振荡衰减(类型2),λ1 = 1 -γ/2时为SMA(类型3),λ1>1 -γ/2时为2:1机电响应(类型4)。在阶段C,单个容量扰动δSVj不仅会直接影响Pj + 1,还会影响P的后续值。在八只麻醉犬中使用二尖瓣封堵器进行的充盈容量扰动仅导致类型1和2的响应。模型(使用γ和λ1的实验值)在八只开胸犬中预测的响应与实验响应相符,这表明SMA不太可能由前负荷和后负荷的变化引发和维持。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验