al-Kassim L S, Tsai C S
Department of Chemistry, Carleton University, Ottawa, ON, Canada.
Biochem Cell Biol. 1993 Sep-Oct;71(9-10):421-6. doi: 10.1139/o93-062.
A major alcohol dehydrogenase isozyme that displays dual coenzyme specificity has been purified from pickerel liver by ion-exchange, gel filtration, and affinity chromatographic procedures. The purified enzyme is chromatographically and electrophoretically homogeneous. It is dimeric and possesses common physical properties shared by other liver alcohol dehydrogenases. Phosphorus-31 nuclear magnetic resonance spectroscopy demonstrates that NADP+ binds to two coenzyme sites of the pickerel enzyme. Steady-state kinetic studies suggest that pickerel liver alcohol dehydrogenase catalyzes NAD(P)(+)-linked ethanol oxidation via a random pathway. While the NADP+ reduction involves the formation of an abortive complex at high NADP+ concentrations, the NAD+ reduction at low NAD+ concentrations follows an ordered Bi-Bi mechanism with NAD+ being the leading reactant.