Suppr超能文献

Intracellular calcium responses of circadian pacemaker neurons measured with fura-2.

作者信息

Geusz M E, Michel S, Block G D

机构信息

Department of Biology, University of Virginia, Charlottesville 22903.

出版信息

Brain Res. 1994 Feb 28;638(1-2):109-16. doi: 10.1016/0006-8993(94)90639-4.

Abstract

The circadian pacemaker in the eye of the mollusk Bulla gouldiana is located within basal retinal neurons (BRNs) that express a circadian rhythm in cell culture. Light and other depolarizing stimuli shift the phase of the pacemaker in the eye through a process that requires extracellular calcium and is blocked by Ni2+. To test directly if an influx of Ca2+ is present throughout depolarizing treatments that produce phase shifts, dissociated BRNs in cell culture were loaded with a membrane-permeable form of the calcium-sensitive dye fura-2, and then depolarized with elevated levels of extracellular K+. Calcium levels in the BRNs remained elevated during treatments with 50 mM K+ lasting 1 h, a sufficient duration to phase shift the circadian pacemaker. Lowering extracellular free Ca2+ (approx. 1.7 x 10(-7) M) during depolarization blocked the rise in intracellular Ca2+, verifying that a Ca2+ influx is required. The sustained Ca2+ elevation during depolarization was also prevented with 50 mM Ni2+, which blocks phase shifts of the rhythm to depolarization, but not with 5 mM Ni2+, which does not block phase shifts. The initial rise in [Ca2+]i in response to 50 mM K+ was largest on average during the subjective night. The results show that a critical portion of the entrainment pathway persists in pacemaker neurons during cell culture, and that the phase-shifting stimulus may depend on a prolonged Ca2+ signal.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验