Satishchandran C, Taylor J C, Markham G D
Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111.
Mol Microbiol. 1993 Aug;9(4):835-46. doi: 10.1111/j.1365-2958.1993.tb01742.x.
The sole biosynthetic route to S-adenosylmethionine, the primary biological alkylating agent, is catalysed by S-adenosylmethionine synthetase (ATP:L-methionine S-adenosyltransferase). In Escherichia coli and Salmonella typhimurium numerous studies have located a structural gene (metK) for this enzyme at 63 min on the chromosomal map. We have now identified a second structural gene for S-adenosylmethionine synthetase in E. coli by DNA hybridization experiments with metK as the probe; we denote this gene as metX. The metX gene is located adjacent to metK with the gene order speA metK metX speC. The metK and metX genes are separated by approximately 0.8 kb. The metK and the metX genes are oriented convergently as indicated by DNA hybridization experiments using sequences from the 5' and 3' ends of metK. The metK gene product is detected immunochemically only in cells growing in minimal media, whereas the metX gene product is detected immunochemically in cells grown in rich media at all growth phases and in stationary phase in minimal media. Mutants in metK or metX were obtained by insertion of a kanamycin resistance element into the coding region of the cloned metK gene (metK::kan) followed by use of homologous recombination to disrupt the chromosomal metK or metX gene. The metK::kan mutant thus prepared does not grow on minimal media but does grow normally on rich media, while the corresponding metX::kan mutant does not grow on rich media although it grows normally on minimal media. These results indicate that metK expression is essential for growth of E. coli on minimal media and metX expression is essential for growth on rich media. Our results demonstrate that AdoMet synthetase has an essential cellular and/or metabolic function. Furthermore, the growth phenotypes, as well as immunochemical studies, demonstrate that the two genes that encode S-adenosylmethionine synthetase isozymes are differentially regulated. The mutations in metK and metX are highly unstable and readily yield kanamycin-resistant cells in which the chromosomal location of the kanamycin-resistance element has changed.
S-腺苷甲硫氨酸是主要的生物烷基化剂,其唯一的生物合成途径由S-腺苷甲硫氨酸合成酶(ATP:L-甲硫氨酸S-腺苷转移酶)催化。在大肠杆菌和鼠伤寒沙门氏菌中,大量研究已在染色体图谱上63分钟处定位了该酶的一个结构基因(metK)。我们现在通过以metK为探针的DNA杂交实验,在大肠杆菌中鉴定出了S-腺苷甲硫氨酸合成酶的第二个结构基因;我们将此基因命名为metX。metX基因位于metK附近,基因顺序为speA metK metX speC。metK和metX基因被大约0.8 kb的间隔分开。如使用metK 5'和3'端序列进行的DNA杂交实验所示,metK和metX基因呈反向排列。metK基因产物仅在基本培养基中生长的细胞中通过免疫化学方法检测到,而metX基因产物在丰富培养基中生长的所有生长阶段的细胞以及基本培养基中稳定期的细胞中均可通过免疫化学方法检测到。通过将卡那霉素抗性元件插入克隆的metK基因的编码区(metK::kan),然后利用同源重组破坏染色体上的metK或metX基因,获得了metK或metX的突变体。如此制备的metK::kan突变体在基本培养基上不能生长,但在丰富培养基上能正常生长,而相应的metX::kan突变体在丰富培养基上不能生长,尽管它在基本培养基上能正常生长。这些结果表明,metK的表达对于大肠杆菌在基本培养基上的生长至关重要,而metX的表达对于在丰富培养基上的生长至关重要。我们的结果表明,腺苷甲硫氨酸合成酶具有重要的细胞和/或代谢功能。此外,生长表型以及免疫化学研究表明,编码S-腺苷甲硫氨酸合成酶同工酶的两个基因受到不同的调控。metK和metX中的突变非常不稳定,很容易产生卡那霉素抗性细胞,其中卡那霉素抗性元件的染色体位置发生了变化。