Suppr超能文献

神经募集解释了空间位置的“韦伯定律”。

Neural recruitment explains "Weber's law" of spatial position.

作者信息

Hess R F, Hayes A

机构信息

McGill Vision Research, Department of Ophthalmology, McGill University, Montréal, Québec, Canada.

出版信息

Vision Res. 1993 Aug;33(12):1673-84. doi: 10.1016/0042-6989(93)90033-s.

Abstract

We ask whether the well known Weber's law between spatial localization and element separation for high contrast, spectrally broad-band stimuli is a consequence of the organization of the early visual filters, or a fundamental constraint on the computation of spatial position by more central mechanisms. We address this question by identifying the individual contributions of mechanisms tuned to different ranges of spatial frequencies and contrast. We measure spatial-alignment and bisection error as a function of element separation at each of a number of spatial scales, using spectrally narrow-band stimuli of fixed supra-threshold contrast. We show that stimuli which minimize the extent of neural recruitment across different spatial channels before the site of extraction of the local contrast energy (and to a lesser extent across different contrast channels) do not exhibit Weber's law for either alignment or bisection. We present evidence that Weber's law for localization with increasing separation, found for stimuli of high contrast and broad-band spatial frequency content, is a consequence of the successive disengagement of unitary neural mechanisms, each of which has different spatial and contrast properties, and none of which individually exhibits Weber's law for spatial position.

摘要

我们探讨了对于高对比度、光谱宽带刺激而言,空间定位与元素分离之间著名的韦伯定律,是早期视觉滤波器组织的结果,还是更高级中枢机制对空间位置计算的基本限制。我们通过确定调谐到不同空间频率范围和对比度的机制的各自贡献来解决这个问题。我们使用固定超阈值对比度的光谱窄带刺激,在多个空间尺度上测量空间对齐和二等分误差作为元素分离的函数。我们表明,在局部对比度能量提取位点之前(以及在较小程度上跨不同对比度通道)使跨不同空间通道的神经募集范围最小化的刺激,在对齐或二等分方面均不表现出韦伯定律。我们提供的证据表明,对于高对比度和宽带空间频率内容的刺激所发现的、随着分离增加而出现的定位韦伯定律,是单一神经机制相继脱离的结果,每个单一神经机制都具有不同的空间和对比度属性,且没有一个单独表现出空间位置的韦伯定律。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验