Suppr超能文献

Modulators of cellular protein phosphorylation alter the trans-activation function of human progesterone receptor and the biological activity of progesterone antagonists.

作者信息

Edwards D P, Weigel N L, Nordeen S K, Beck C A

机构信息

Department of Pathology, University of Colorado Health Sciences Center, Denver 80262.

出版信息

Breast Cancer Res Treat. 1993;27(1-2):41-56. doi: 10.1007/BF00683192.

Abstract

Addition of progesterone to breast cancer cells in vivo increases phosphorylation of human progesterone receptor (PR), suggesting that phosphorylation has a regulatory role in producing the activated form of receptor. Kinetic analysis indicates that hormone-dependent phosphorylation is sequential and that early stages of phosphorylation(s) are closely associated with enhancement of PR-DNA binding while later stages are associated with a trans-activation function. Various agents that stimulate cellular protein phosphorylation (8-Br cAMP, okadaic acid, TPA) functionally synergize with progesterone to enhance progesterone-dependent PR trans-activation in intact cells. These results suggest that protein phosphorylation does have a role in modulating the trans-activation function of PR in vivo. They also demonstrate cross-talk between second messenger signal transduction pathways and nuclear steroid receptors. Whether the phosphorylated target that provides the link between these two signal transduction pathways is PR itself or another protein involved in PR-mediated gene transcription is not known. Positive cooperative interactions were also observed between cAMP signaling pathways and the progesterone antagonist RU486, that resulted in RU486 exerting substantial agonist activities. This ability of cross-talk between second messenger and steroid receptor signal transduction pathways to override the antagonistic effects of RU486 suggests a novel mechanism to explain the problem of resistance to clinically important steroid antagonists.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验