Suppr超能文献

The neuropeptide Phe-Met-Arg-Phe-NH2 (FMRFamide) increases levels of inositol 1,4,5-trisphosphate in the tentacle retractor muscle of Helix aspersa.

作者信息

Falconer S W, Carter A N, Downes C P, Cottrell G A

机构信息

School of Biological and Medical Sciences, University of St Andrews, Fife, Scotland.

出版信息

Exp Physiol. 1993 Nov;78(6):757-66. doi: 10.1113/expphysiol.1993.sp003723.

Abstract

The C3 neurone, which acts as a motoneurone for the tentacle retractor muscle in Helix aspersa, contains both Phe-Met-Arg-Phe-NH2 (FMRFamide) and acetylcholine (ACh). Each of these transmitter substances evokes contraction of the isolated muscle. FMRFamide induces a delayed rise in tension followed by phasic contractions. Unlike the response to ACh, this response is not associated with a depolarization of the muscle cells. Here we show that FMRFamide stimulates the inositol phosphate second messenger system in the muscle and causes a significant increase in total inositol trisphosphate (InsP3) levels. The isomer which releases intracellular Ca2+ stores, inositol 1,4,5-trisphosphate (Ins(1,4,5)P3), is increased in a similar proportion to the total InsP3. The production of Ins(1,4,5)P3 is therefore likely to be involved in the response of the muscle to FMRFamide and may account for the oscillatory nature of the mechanical response. The N-terminally extended heptapeptide pGlu-Asp-Pro-Phe-Leu-Arg-Phe-NH2 (pQDPFLRFamide), which relaxes the muscle, had no acute effect on InsP3 levels. Indirect evidence also indicates that intracellular Ca2+ stores are required for the generation of the FMRFamide response.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验