Li Z, Ferguson A V
Department of Physiology, Queen's University, Kingston, Ontario, Canada.
Neuroscience. 1993 Jul;55(1):197-207. doi: 10.1016/0306-4522(93)90466-s.
The responsiveness of neurons in the hypothalamic paraventricular nucleus to angiotensin II was investigated using extracellular single unit recording techniques in rat brain slices. Bath application of angiotensin II at a concentration of 3 x 10(-7) M for 2-5 min resulted in excitatory responses in 50.4% of 141 paraventricular cells tested. The mean increase in firing rate was 2.12 +/- 0.20 (mean +/- S.E.M.) spikes/s, which represents a mean increase in activity of 149.8 +/- 16.5%. Angiotensin II-sensitive neurons usually displayed irregular, phasic, or very slow spontaneous activity, with the majority of these neurons located in the magnocellular region. Under physiological blockade of synaptic transmission with low Ca2+/high Mg2+ medium, neuronal responses to this peptide remained in 12 (92.3%) of 13 cells tested. Application of three successive doses of angiotensin II ranging from 3 x 10(-9)-3 x 10(-7) M showed that neuronal responses were dose-dependent with an estimated threshold of 10(-8) M. In comparison with angiotensin III, angiotensin II not only stimulated more paraventricular cells, but usually induced larger excitatory responses. Angiotensin II subtype 1 receptor antagonist losartan completely blocked angiotensin II responsiveness in each of 14 paraventricular cells tested whereas PD 123319, an angiotensin II subtype 2 receptor antagonist, exhibited a partial inhibitory effect in about one half of another 13 cells. In addition, single unit in vitro subfornical organ recordings demonstrate that angiotensin II evokes greater excitatory responses than in the paraventricular nucleus and that these effects are abolished by losartan application. These results support the hypothesis that within both the paraventricular nucleus and subfornical organ angiotensin II is a bioactive peptide which modulates neuronal activity and thus may exert significant control over neuroendocrine and autonomic functions.
利用大鼠脑片的细胞外单单位记录技术,研究了下丘脑室旁核神经元对血管紧张素II的反应性。以3×10⁻⁷ M的浓度将血管紧张素II浴灌2 - 5分钟,在141个受试室旁细胞中,50.4%产生了兴奋反应。放电频率的平均增加为2.12±0.20(平均值±标准误)个脉冲/秒,这代表活动平均增加了149.8±16.5%。血管紧张素II敏感神经元通常表现出不规则、阶段性或非常缓慢的自发活动,这些神经元大多数位于大细胞区。在用低钙/高镁培养基进行突触传递的生理性阻断时,在13个受试细胞中的12个(92.3%)中,神经元对该肽的反应仍然存在。应用三剂连续剂量范围为3×10⁻⁹ - 3×10⁻⁷ M的血管紧张素II表明,神经元反应呈剂量依赖性,估计阈值为10⁻⁸ M。与血管紧张素III相比,血管紧张素II不仅刺激更多的室旁细胞,而且通常诱导更大的兴奋反应。血管紧张素II 1型受体拮抗剂氯沙坦完全阻断了14个受试室旁细胞中每个细胞对血管紧张素II的反应性,而血管紧张素II 2型受体拮抗剂PD 123319在另外13个细胞的约一半中表现出部分抑制作用。此外,体外穹窿下器官单单位记录表明,血管紧张素II引起的兴奋反应比在室旁核中更大,并且这些作用可通过应用氯沙坦而消除。这些结果支持以下假说:在室旁核和穹窿下器官内,血管紧张素II是一种生物活性肽,可调节神经元活动,从而可能对神经内分泌和自主功能发挥重要控制作用。