Morrill G A, Doi K, Erlichman J, Kostellow A B
Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, NY 10461.
Biochim Biophys Acta. 1993 Oct 3;1158(2):146-54. doi: 10.1016/0304-4165(93)90008-v.
Cyclic AMP, which maintains the vertebrate oocyte in prophase arrest under physiological conditions, exhibits specific and saturable binding to the cytoplasmic face of the prophase-arrested Rana pipiens oocyte plasma membrane. Scatchard type analyses of [3H]cAMP binding to isolated plasma membranes indicate a single class of binding sites with a Kd = 19.3 +/- 7.0 nM at cAMP concentrations below 10(-6) M and additional low affinity site(s) and/or non-specific binding at concentrations above 10(-6) M. Photoaffinity labeling of prophase oocyte plasma membranes with [32P]-8-N3cAMP demonstrates cAMP/cGMP-displacable binding of 8-N3[32P]cAMP to a 100-110 kDa peptide doublet. Plasma membrane fluidity was monitored by electron spin resonance in isolated plasma-vitelline membranes using a 5-doxyl stearic acid probe. Exogenous dibutyryl cAMP (dbcAMP) produces an increase in membrane fluidity within minutes and blocks and/or reverses the progesterone-induced decrease in plasma membrane fluidity. The dbcAMP concentration that produced half-maximal fluidity increase (10 microM) corresponds to the half-maximal inhibiting dose of dbcAMP for progesterone induction of meiosis. Cholera toxin, which elevates intracellular cAMP and blocks meiosis, also increases membrane fluidity and inhibits progesterone-induced decrease in membrane fluidity. Elevated levels of intracellular cAMP thus appear to maintain meiotic arrest by binding to specific plasma membrane site(s) and maintaining the plasma membrane in a relatively fluid state. The progesterone-induced fall in intracellular cAMP first reported in Rana thus appears to be responsible for the progesterone-induced increase in membrane fluidity and further suggests that the change in membrane order is essential for the resumption of the meiotic divisions.