Suppr超能文献

Ultrastructural and functional connectivity of intracellularly stained neurones in the vertebrate retina: correlative analyses.

作者信息

Djamgoz M B, Kolb H

机构信息

Department of Biology, Imperial College of Science, Technology and Medicine, London, United Kingdom.

出版信息

Microsc Res Tech. 1993 Jan 1;24(1):43-66. doi: 10.1002/jemt.1070240106.

Abstract

A variety of intracellular recording and staining techniques has been used to establish structure-function and, in some cases, structure-function-neurochemical correlations in fish, turtle, and cat retinae. Cone photoreceptor-horizontal cell connectivity has been studied extensively in the cyprinid fish retina by intracellular staining with horseradish peroxidase (HRP) and subsequent electron microscopy. The available data suggest that horizontal cell dendrites around the ridge of the synaptic ribbon are postsynaptic, whilst finger-like extensions ("spinules") of lateral dendrites function as inhibitory feedback terminals. An interesting feature of this interaction is its plasticity: the feedback pathway is suppressed in the dark and becomes potentiated by light adaptation of the retina. Intracellular recordings and stainings of ganglion cells in both turtle and cat retinae have been possible. Prelabelling of ganglion cells by retrograde transport of rhodamine from the tectum allows ganglion cells to be stained under visual control, and their synaptic inputs determined by electron microscopy. Such studies have been extended to double labelling by using autoradiography or postembedding immunohistochemistry to identify the neurotransmitter content of the labelled cell and/or the neurotransmitter(s) converging upon it. It is envisaged that further applications of intracellular staining followed by double- or even triple-labelling will continue to enhance greatly our understanding of the functional architecture of the vertebrate retina.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验