Saito K, Chen C Y, Masana M, Crowley J S, Markey S P, Heyes M P
Section on Analytical Biochemistry, National Institute of Mental Health, Bethesda, MD 20892.
Biochem J. 1993 Apr 1;291 ( Pt 1)(Pt 1):11-4. doi: 10.1042/bj2910011.
Accumulation of quinolinic acid and L-kynurenine occurs in the brain and/or blood following immune activation, and may derive from L-tryptophan following induction of indoleamine 2,3-dioxygenase and other kynurenine-pathway enzymes. In the present study a survey of various cell lines derived from either brain or systemic tissues showed that, while all cells examined responded to interferon-gamma by increased conversion of L-[13C6]tryptophan into L-kynurenine (human: B-lymphocytes, neuroblastoma, glioblastoma, lung, liver, kidney; rat brain: microglia, astrocytes and oligodendrocytes), only macrophage-derived cells (peripheral-blood mononuclear cells; THP-1, U-937) and certain liver cells (SKHep1) synthesized [13C6]quinolinic acid. Tumour necrosis factor-alpha enhanced the effects of interferon-gamma in THP-1 cells. Norharmane, 6-chloro-DL-tryptophan and 4-chloro-3-hydroxyanthranilate attenuated quinolinic acid formation by THP-1 cells with IC50 values of 51 microM, 58 microM and 0.11 microM respectively. Norharmane and 6-chloro-DL-tryptophan attenuated L-kynurenine formation with IC50 values of 43 microM and 51 microM respectively, whereas 4-chloro-3-hydroxyanthranilate had no effect on L-kynurenine accumulation. The reductions in L-kynurenine and quinolinic acid formation are consistent with the reports that norharmane is an inhibitor of indoleamine 2,3-dioxygenase, 6-chloro-DL-tryptophan is metabolized through the kynurenine pathway, and 4-chloro-3-hydroxyanthranilate is an inhibitor of 3-hydroxyanthranilate 3,4-dioxygenase. These results suggest that many tissues may contribute to the production of L-kynurenine following indoleamine 2,3-dioxygenase induction and immune activation. Quinolinic acid may be directly synthesized from L-tryptophan in both macrophages and certain types of liver cells, although uptake of quinolinic acid precursors from blood may contribute to quinolinic acid synthesis in cells that cannot convert L-kynurenine into quinolinic acid.
免疫激活后,喹啉酸和L-犬尿氨酸在脑和/或血液中蓄积,可能源于吲哚胺2,3-双加氧酶及其他犬尿氨酸途径酶被诱导后L-色氨酸的代谢。在本研究中,对源自脑或全身组织的各种细胞系进行的调查显示,虽然所有检测的细胞对干扰素-γ的反应都是L-[13C6]色氨酸向L-犬尿氨酸的转化率增加(人类:B淋巴细胞、神经母细胞瘤、胶质母细胞瘤、肺、肝、肾;大鼠脑:小胶质细胞、星形胶质细胞和少突胶质细胞),但只有巨噬细胞衍生的细胞(外周血单核细胞;THP-1、U-937)和某些肝细胞(SKHep1)合成了[13C6]喹啉酸。肿瘤坏死因子-α增强了干扰素-γ对THP-1细胞的作用。去甲哈尔满、6-氯-DL-色氨酸和4-氯-3-羟基邻氨基苯甲酸分别以51 microM、58 microM和0.11 microM的IC50值减弱THP-1细胞喹啉酸的形成。去甲哈尔满和6-氯-DL-色氨酸分别以43 microM和51 microM的IC50值减弱L-犬尿氨酸的形成,而4-氯-3-羟基邻氨基苯甲酸对L-犬尿氨酸的蓄积没有影响。L-犬尿氨酸和喹啉酸形成的减少与以下报道一致:去甲哈尔满是吲哚胺2,3-双加氧酶的抑制剂,6-氯-DL-色氨酸通过犬尿氨酸途径代谢,4-氯-3-羟基邻氨基苯甲酸是3-羟基邻氨基苯甲酸3,4-双加氧酶的抑制剂。这些结果表明,许多组织可能在吲哚胺2,3-双加氧酶诱导和免疫激活后对L-犬尿氨酸的产生有贡献。喹啉酸可能在巨噬细胞和某些类型的肝细胞中由L-色氨酸直接合成,尽管从血液中摄取喹啉酸前体可能有助于不能将L-犬尿氨酸转化为喹啉酸的细胞中的喹啉酸合成。