Gomez C M, Bhattacharyya B B, Charnet P, Day J W, Labarca C, Wollmann R L, Lambert E H
Department of Neurology, University of Minnesota, Minneapolis, USA.
Muscle Nerve. 1996 Jan;19(1):79-87. doi: 10.1002/(SICI)1097-4598(199601)19:1<79::AID-MUS11>3.0.CO;2-Z.
To investigate the effect of acetylcholine receptor (AChR) mutations on neuromuscular transmission and to develop a model for the human neuromuscular disease, the slow-channel syndrome, we generated transgenic mice with abnormal AChRs using a delta subunit with a mutation in the ion channel domain. In three transgenic lines, nerve-evoked end-plate currents and spontaneous miniature end-plate currents (MEPCs) had prolonged decay phases and MEPC amplitudes were reduced by 33%. Single nerve stimuli elicited repetitive compound muscle action potentials in vivo. Transgenic mice were abnormally sensitive to the neuromuscular blocker, curare. These observations demonstrate that we can predictably alter AChR function, synaptic responses, and muscle fiber excitation in vivo by overexpressing subunits containing well-defined mutations. Furthermore these data support the hypothesis that the electrophysiological findings in the neuromuscular disorder, the slow-channel syndrome, are due to mutant AChRs.
为了研究乙酰胆碱受体(AChR)突变对神经肌肉传递的影响,并建立一种人类神经肌肉疾病——慢通道综合征的模型,我们使用离子通道结构域发生突变的δ亚基生成了具有异常AChR的转基因小鼠。在三个转基因品系中,神经诱发的终板电流和自发微小终板电流(MEPCs)的衰减期延长,且MEPC振幅降低了33%。单次神经刺激在体内引发了重复性复合肌肉动作电位。转基因小鼠对神经肌肉阻滞剂箭毒异常敏感。这些观察结果表明,通过过表达含有明确突变的亚基,我们可以在体内可预测地改变AChR功能、突触反应和肌纤维兴奋性。此外,这些数据支持了以下假设,即神经肌肉疾病慢通道综合征中的电生理发现是由突变的AChR引起的。