Suppr超能文献

人血浆磷脂转运蛋白诱导高密度脂蛋白颗粒增大的机制:颗粒融合的证据。

The mechanism of human plasma phospholipid transfer protein-induced enlargement of high-density lipoprotein particles: evidence for particle fusion.

作者信息

Lusa S, Jauhiainen M, Metso J, Somerharju P, Ehnholm C

机构信息

Department of Medical Chemistry, University of Helsinki, Finland.

出版信息

Biochem J. 1996 Jan 1;313 ( Pt 1)(Pt 1):275-82. doi: 10.1042/bj3130275.

Abstract
  1. Phospholipid transfer protein (PLTP) mediates conversion of high-density lipoprotein (HDL3) to large particles, with concomitant release of apolipoprotein A-I (apoA-I). To study the mechanisms involved in this conversion, reconstituted HDL (rHDL) particles containing either fluorescent pyrenylacyl cholesterol ester (PyrCE) in their core (PyrCE-rHDL) or pyrenylacyl phosphatidylcholine (PysPC) in their surface lipid layer (PyrPC-rHDL) were prepared. Upon incubation with PLTP they behaved as native HDL3, in that their size increased considerably. 2. When PyrPC-rHDL was incubated with HDL3 in the presence of PLTP, a rapid decline of the pyrene excimer/monomer fluorescence ratio (E/M) occurred, demonstrating that PLTP induced mixing of the surface lipids of PyrPC-rHDL and HDL3. As this mixing was almost complete before any significant increase in HDL particle size was observed, it represents PLTP-mediated phospholipid transfer or exchange that is not directly coupled to the formation of large HDL particles. 3. When core-labelled PyrCE-rHDL was incubated in the presence of PLTP, a much slower, time-dependent decrease of E/M was observed, demonstrating that PLTP also promotes mixing of the core lipids. The rate and extent of mixing of core lipids correlated with the amount of PLTP added and with the increase in particle size. The enlarged particles formed could be visualized as discrete, non-aggregated particles by electron microscopy. Concomitantly with the appearance of enlarged particles, lipid-poor apoA-I molecules were released. These data, together with the fact that PLTP has been shown not to mediate transfer of cholesterol esters, strongly suggest that particle fusion rather than (net) lipid transfer or particle aggregation is responsible for the enlargement of HDL particles observed upon incubation with PLTP.4.ApoA-I rHDL, but not apoA-II rHDL, were converted into large particles, suggesting that the presence of apoA-I is required for PLTP-mediated HDL fusion. A model for PLTP-mediated enlargement of HDL particles is presented.
摘要
  1. 磷脂转运蛋白(PLTP)介导高密度脂蛋白(HDL3)向大颗粒的转化,并伴随载脂蛋白A-I(apoA-I)的释放。为了研究这种转化所涉及的机制,制备了在其核心含有荧光芘酰基胆固醇酯(PyrCE)的重组HDL(rHDL)颗粒(PyrCE-rHDL)或在其表面脂质层含有芘酰基磷脂酰胆碱(PysPC)的颗粒(PyrPC-rHDL)。与PLTP一起孵育时,它们表现得如同天然HDL3,其大小显著增加。2. 当PyrPC-rHDL在PLTP存在下与HDL3一起孵育时,芘激基缔合物/单体荧光比率(E/M)迅速下降,表明PLTP诱导了PyrPC-rHDL和HDL3表面脂质的混合。由于在观察到HDL颗粒大小有任何显著增加之前这种混合几乎就已完成,所以它代表了PLTP介导的磷脂转移或交换,而这与大HDL颗粒的形成没有直接关联。3. 当核心标记的PyrCE-rHDL在PLTP存在下孵育时,观察到E/M下降得慢得多且具有时间依赖性,表明PLTP也促进核心脂质的混合。核心脂质混合的速率和程度与添加的PLTP量以及颗粒大小的增加相关。通过电子显微镜可以将形成的增大颗粒可视化为离散的、非聚集的颗粒。伴随着增大颗粒的出现,脂质含量低的apoA-I分子被释放。这些数据,连同PLTP已被证明不介导胆固醇酯转移这一事实,强烈表明颗粒融合而非(净)脂质转移或颗粒聚集是与PLTP孵育后观察到的HDL颗粒增大的原因。4. ApoA-I rHDL而非apoA-II rHDL被转化为大颗粒,表明apoA-I的存在是PLTP介导的HDL融合所必需的。提出了一个PLTP介导的HDL颗粒增大的模型。

相似文献

2
The mechanism of the remodeling of high density lipoproteins by phospholipid transfer protein.
J Biol Chem. 2001 Jul 20;276(29):26898-905. doi: 10.1074/jbc.M010708200. Epub 2001 Apr 26.
3
Remodeling of apolipoprotein E-containing spherical reconstituted high density lipoproteins by phospholipid transfer protein.
J Lipid Res. 2008 Jan;49(1):115-26. doi: 10.1194/jlr.M700220-JLR200. Epub 2007 Oct 5.
5
Plasma phospholipid transfer protein-mediated reactions are impaired by hypochlorite-modification of high density lipoprotein.
Int J Biochem Cell Biol. 2003 Feb;35(2):192-202. doi: 10.1016/s1357-2725(02)00130-9.
8
Phospholipid transfer is a prerequisite for PLTP-mediated HDL conversion.
Biochemistry. 2000 Dec 26;39(51):16092-8. doi: 10.1021/bi0019287.
9
Oxidative modification of HDL3 in vitro and its effect on PLTP-mediated phospholipid transfer.
Biochim Biophys Acta. 1998 Mar 30;1391(2):181-92. doi: 10.1016/s0005-2760(98)00008-3.

引用本文的文献

1
High-density lipoproteins, reverse cholesterol transport and atherogenesis.
Nat Rev Cardiol. 2021 Oct;18(10):712-723. doi: 10.1038/s41569-021-00538-z. Epub 2021 Apr 8.
2
High-Density Lipoproteins and Serum Amyloid A (SAA).
Curr Atheroscler Rep. 2021 Jan 15;23(2):7. doi: 10.1007/s11883-020-00901-4.
3
Metabolism of PLTP, CETP, and LCAT on multiple HDL sizes using the Orbitrap Fusion Lumos.
JCI Insight. 2021 Feb 8;6(3):143526. doi: 10.1172/jci.insight.143526.
4
Rethinking reverse cholesterol transport and dysfunctional high-density lipoproteins.
J Clin Lipidol. 2018 Jul-Aug;12(4):849-856. doi: 10.1016/j.jacl.2018.04.001. Epub 2018 Apr 12.
5
Multiphoton-Polymerized 3D Protein Assay.
ACS Appl Mater Interfaces. 2018 Jan 17;10(2):1474-1479. doi: 10.1021/acsami.7b13183. Epub 2018 Jan 5.
6
Acylation of lysine residues in human plasma high density lipoprotein increases stability and plasma clearance in vivo.
Biochim Biophys Acta. 2016 Nov;1861(11):1787-1795. doi: 10.1016/j.bbalip.2016.08.017. Epub 2016 Sep 2.
7
Fluorescent Sterols and Cholesteryl Esters as Probes for Intracellular Cholesterol Transport.
Lipid Insights. 2016 Jun 9;8(Suppl 1):95-114. doi: 10.4137/LPI.S31617. eCollection 2015.
8
Dysfunctional High-Density Lipoprotein: An Innovative Target for Proteomics and Lipidomics.
Cholesterol. 2015;2015:296417. doi: 10.1155/2015/296417. Epub 2015 Nov 8.
9
HDL-apolipoprotein A-I exchange is independently associated with cholesterol efflux capacity.
J Lipid Res. 2015 Oct;56(10):2002-9. doi: 10.1194/jlr.M059865. Epub 2015 Aug 7.

本文引用的文献

1
Protein measurement with the Folin phenol reagent.
J Biol Chem. 1951 Nov;193(1):265-75.
3
Activation of human plasma lipid transfer protein by apolipoproteins.
Biochemistry. 1993 May 18;32(19):5029-35. doi: 10.1021/bi00070a009.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验