Suppr超能文献

Quantitative magnetic resonance flow and diffusion imaging in porous media.

作者信息

Rajanayagam V, Yao S, Pope J M

机构信息

School of Physics, University of New South Wales, Kensington, Australia.

出版信息

Magn Reson Imaging. 1995;13(5):729-38. doi: 10.1016/0730-725x(95)00022-9.

Abstract

Quantitative flow and diffusion measurements have been made for water in model porous media, using magnetic resonance micro-imaging methods. The samples consisted of compacted glass beads of various sizes down to 1 mm diameter. Typical flow and diffusion images exhibited a spatial resolution of 117 microns x 117 microns and velocities in the range 1-2 mm/s. Comparison of volume flow rates calculated from the flow velocity maps with values measured directly yielded good agreement in all cases. There was also good agreement between the mean diffusion coefficient of water calculated from the diffusion maps and the bulk diffusion coefficient for pure water at the same temperature. In addition, the mean diffusion coefficient did not depend on the pore sizes in the bead diameter range of 1-3 mm. Our results also show that partial volume effects can be compensated by appropriate thresholding of the images prior to the final Fourier transformation in the flow-encoding dimension.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验