Fan S F, Crain S M
Department of Neuroscience, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY 10461, USA.
Brain Res. 1995 Oct 23;696(1-2):97-105. doi: 10.1016/0006-8993(95)00789-s.
The effects of the mu opioid receptor agonists, morphine and Tyr-D-Ala-Gly-N-methyl-Phe-Gly-ol (DAGO), the delta opioid receptor agonist, Tyr-D-Pen-Gly-Phe-D-penicillamine (DPDPE) and the kappa-opioid receptor agonist, dynorphin A-(1-13) on the whole-cell K+ currents (IK) of cultured mouse DRG neurons and neuroblastoma X DRG neuron hybrid F11 cells were studied. These opioid ligands all elicited dual effects. Low concentrations (< nM) usually elicited a transient increase in IK (within 1 min), followed by a sustained decrease in IK. In contrast, microM concentrations rapidly elicited a sustained increase in IK. After brief treatment with cholera toxin subunit B (CTX-B), the usual sustained decrease in IK evoked by < nM opioid agonists no longer occurred. Low concentrations then elicited only a sustained increase in IK. On the other hand, after chronic treatment with pertussis toxin (PTX), the usual microM opioid-induced increases in IK no longer occurred and more than half of the cells responded with a sustained decrease of IK to microM as well as nM opioids. The results suggest that mu, delta and kappa opioid receptors are each coupled to K+ channels through CTX-B- and PTX-sensitive transduction systems. Both systems have similar threshold concentrations to opioids. Activation of the CTX-B-sensitive opioid receptor/transduction system resulted in a decrease in K+ conductance of the cell which is generally associated with an increase in neuronal excitability. Activation of the other system resulted in an increase in K+ conductance which will, in general, decrease neuronal excitability. The net change in the IK depends upon which effect predominates. The dominance at different opioid concentrations may depend on the relative efficacies of the coupling of these two systems to K+ channels.
研究了μ阿片受体激动剂吗啡和酪氨酰-D-丙氨酰-甘氨酰-N-甲基苯丙氨酰-甘氨醇(DAGO)、δ阿片受体激动剂酪氨酰-D-青霉胺-甘氨酰-苯丙氨酰-D-青霉胺(DPDPE)以及κ阿片受体激动剂强啡肽A-(1-13)对培养的小鼠背根神经节(DRG)神经元和神经母细胞瘤X DRG神经元杂交F11细胞全细胞钾电流(IK)的影响。这些阿片类配体均产生双重效应。低浓度(<nM)通常引起IK短暂增加(1分钟内),随后IK持续下降。相反,微摩尔浓度迅速引起IK持续增加。用霍乱毒素B亚基(CTX-B)短暂处理后,<nM阿片类激动剂引起的通常的IK持续下降不再出现。低浓度仅引起IK持续增加。另一方面,用百日咳毒素(PTX)慢性处理后,微摩尔阿片类药物诱导的IK增加不再出现,超过一半的细胞对微摩尔和纳摩尔阿片类药物的反应是IK持续下降。结果表明,μ、δ和κ阿片受体均通过CTX-B和PTX敏感的转导系统与钾通道偶联。这两个系统对阿片类药物的阈值浓度相似。CTX-B敏感的阿片受体/转导系统的激活导致细胞钾电导降低,这通常与神经元兴奋性增加有关。另一个系统的激活导致钾电导增加,这通常会降低神经元兴奋性。IK的净变化取决于哪种效应占主导。在不同阿片类药物浓度下的主导作用可能取决于这两个系统与钾通道偶联的相对效能。