Van Doren S R, Kurochkin A V, Hu W, Ye Q Z, Johnson L L, Hupe D J, Zuiderweg E R
Biophysics Research Division, University of Michigan, Ann Arbor 48109-1055, USA.
Protein Sci. 1995 Dec;4(12):2487-98. doi: 10.1002/pro.5560041205.
Stromelysin, a representative matrix metalloproteinase and target of drug development efforts, plays a prominent role in the pathological proteolysis associated with arthritis and secondarily in that of cancer metastasis and invasion. To provide a structural template to aid the development of therapeutic inhibitors, we have determined a medium-resolution structure of a 20-kDa complex of human stromelysin's catalytic domain with a hydrophobic peptidic inhibitor using multinuclear, multidimensional NMR spectroscopy. This domain of this zinc hydrolase contains a mixed beta-sheet comprising one antiparallel strand and four parallel strands, three helices, and a methionine-containing turn near the catalytic center. The ensemble of 20 structures was calculated using, on average, 8 interresidue NOE restraints per residue for the 166-residue protein fragment complexed with a 4-residue substrate analogue. The mean RMS deviation (RMSD) to the average structure for backbone heavy atoms is 0.91 A and for all heavy atoms is 1.42 A. The structure has good stereochemical properties, including its backbone torsion angles. The beta-sheet and alpha-helices of the catalytic domains of human stromelysin (NMR model) and human fibroblast collagenase (X-ray crystallographic model of Lovejoy B et al., 1994b, Biochemistry 33:8207-8217) superimpose well, having a pairwise RMSD for backbone heavy atoms of 2.28 A when three loop segments are disregarded. The hydroxamate-substituted inhibitor binds across the hydrophobic active site of stromelysin in an extended conformation. The first hydrophobic side chain is deeply buried in the principal S'1 subsite, the second hydrophobic side chain is located on the opposite side of the inhibitor backbone in the hydrophobic S'2 surface subsite, and a third hydrophobic side chain (P'3) lies at the surface.
基质溶素是一种典型的基质金属蛋白酶,也是药物研发的靶点,在与关节炎相关的病理性蛋白水解过程中起重要作用,在癌症转移和侵袭的病理性蛋白水解中也起次要作用。为了提供一个结构模板来辅助治疗性抑制剂的开发,我们使用多核、多维核磁共振光谱法测定了人基质溶素催化结构域与一种疏水性肽类抑制剂形成的20 kDa复合物的中等分辨率结构。这种锌水解酶的结构域包含一个混合β折叠,由一条反平行链和四条平行链、三个螺旋以及催化中心附近一个含蛋氨酸的转角组成。对于与一个4残基底物类似物复合的166残基蛋白质片段,平均每个残基使用8个残基间NOE约束来计算20个结构的集合。主链重原子相对于平均结构的平均均方根偏差(RMSD)为0.91 Å,所有重原子的平均均方根偏差为1.42 Å。该结构具有良好的立体化学性质,包括其主链扭转角。人基质溶素催化结构域(NMR模型)与人成纤维细胞胶原酶(Lovejoy B等人1994年b期《生物化学》33:8207 - 8217中的X射线晶体学模型)的β折叠和α螺旋重叠良好,当不考虑三个环段时,主链重原子的成对RMSD为2.28 Å。异羟肟酸取代的抑制剂以伸展构象横跨基质溶素疏水活性位点结合。第一个疏水侧链深埋在主要的S'1亚位点,第二个疏水侧链位于抑制剂主链相对侧的疏水S'2表面亚位点,第三个疏水侧链(P'3)位于表面。